Calorimetric Research into the Heat Capacity of Novel Nano-Sized Cobalt(Nickelite)-Cuprate-Manganites of LaBaMeIICuMnO6 (MeII = Co, Ni) and their Thermodynamic Properties
DOI:
https://doi.org/10.18321/ectj927Keywords:
cobalt(nickelite)-cuprate-manganite, heat capacity, thermodynamicsAbstract
The isobaric heat capacities of novel nano-sized cobalt-cuprate-manganite of lanthanum and barium LaBaCoCuMnO6 and nickel-cuprate-manganite of lanthanum and barium LaBaNiCuMnO6 were investigated by dynamic calorimetry over the temperature range of 298.15‒673 K. It is found that a λ-shaped effect is observed on the curve of the heat capacity dependence on temperature of LaBaCoCuMnO6 at 523 K, while LaBaNiCuMnO6 also has a similar effect at 473 K. Equations for the temperature dependence of the heat capacity of cobalt(nickelite)-cuprate-manganite of lanthanum and barium are derived with allowance for the temperatures of phase transitions. Based on the experimental data, the fundamental constants ‒ the standard heat capacities of the compounds under study were found. Irrespective of the experimental data, we also calculated the standard heat capacities of the mentioned compounds using the Debye theory using the characteristic temperatures of the elements, their melting points, the Koref and Nernst-Lindemann equations. The obtained calculated data on C0p (298.15) of the compounds were in satisfactory agreement with the experimental data on the standard heat capacity. The standard entropies of LaBaCoCuMnO6 and LaBaNiCuMnO6 were calculated by the ion increment method. We calculated the temperature dependences of the enthalpy Ho(T)- Ho(298.15), entropy ΔSo(T), and the reduced thermodynamic potential ΔФ**(Т).
References
(1). J.G. Bednorz, K.A. Müller, Z. Physica B 64 (1986) 189‒193. Crossref
(2). S.A. Nikitin, Soros Educational Journal [Sorosovskii obrazovatelnyi zhurnal] 2 (2004) 92‒98 (in Russian).
(3). Yu.D. Tretyakov, E.A. Gudilin, Russ. Chem Rew. 69 (2000) 3‒40. Crossref
(4). Ya.M. Mukovsky, Mendeleev Chemistry Journal [Zhurnal Ross.Khim.ob-va im D.I. Mendeleeva] XLV (2001) 32‒41. (in Russian).
(5). Yu. Yerin, Chemistry and chemists [Himiya i himiki] 1 (2009) 16‒22 (in Russian)
(6). A. Tarjomannejad, A. Niaei, M. José Illán Gómez, A. Farzi, D. Salari, V. Albaladejo- Fuentes, J. Therm. Anal. Calorim. 129 (2017) 671‒680. Crossref
(7). Yu.D. Tretyakov, O.A. Brylyov, Mendeleev Chemistry Journal [Zhurnal Ross.Khim.ob-va im D.I. Mendeleeva] 44 (2000) 10‒16 (in Russian).
(8). P.A. Grünberg, Phys-Usp. [Uspekhi Fizicheskikh Nauk] 178 (2008) 1349‒1358 (in Russian). Crossref
(9). G.B. Sergeyev. Nanochemistry. Moscow, MSU publ. 2007, 336 p. (in Russian).
(10). B.K. Kasenov, Sh.B. Kasenova, Zh.I. Sagintayeva, M.O. Turtubayeva, E.E. Kyanyshbekov, Chemical Journal of Kazakhstan [Himicheskij zhurnal Kazahstana] 4 (2018) 264‒269.
(11). E.S. Platunov, S.E. Buravoy, V.V. Kurepin, G.S. Petrov. Heatphysical measurements and devices. Leningrad, Mechanical engineering, 1986. 256 p. (in Russian).
(12). Technical specification and maintenance instructions of IT-S-400. Aktyubinsk, Aktyubinsk plant “Etalon”, 1986, 48 p. (in Russian).
(13). V.P. Spiridonov, L.V. Lopatkin. Mathematical processing of experimental data. Moscow, MSU publ., 1970, 221 p. (in Russian).
(14). Z.M. Sharipova, B.K. Kassenov, V.O. Bukharitsyn, Russ. J. Phys. Chem. [Zhurnal fizicheskoi himii] 65 (1991) 1408‒1410 (in Russian).
(15). V.P. Glushko, Thermal constants of substances. Moscow, Science, 1981, 300 p. (in Russian).
(16). R.A. Robie, B.S. Hemingway, J.R. Fisher, (1978). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pa) pressure and at higher temperatures. U.S. Geological Survey Bulletin No. 1452. U.S. Government Printing Office,Washington, DC. 456 p.
(17). Sh.B. Kassenova, B.K. Kassenov, Zh.I. Sagintayeva, K.T. Ermaganbetov, E.E. Kuanyshbekov, A.A. Seisenova, D.I. Smagulova, Zhurnal fizicheskoi himii [Russian Journal of Physical Chemistry] 88 (2014) 836‒840 (in Russian). Crossref
(18). B.K. Kassenov, M.O. Turtubayeva, Sh.K. Amerkhanova, Sh.B. Kassenova, Zh.I. Sagintayeva, E.E. Kuanyshbekov, A.A. Seisenova, D.I. Smagulova, Russ. J. Phys. Chem. 89 (2015) 941‒946. Crossref
(19). B.K. Kassenov, Sh.B. Kassenova, Zh.I. Sagintayeva, M.O. Turtubayeva, K.S. Kakenov, G.A. Esenbayeva, Russ. J. Phys. Chem. 91 (2017) 430‒436. Crossref
(20). L.А. Reznitskiy. Calorimetry of a solid body. Moscow, MSU publ., 1981, 184 p. (in Russian).
(21). B.K. Kassenov, Sh.B. Kassenova, Zh.I. Sagintaeva, B.T. Ermagambet, N.S. Bekturganov, I.M. Oskembekov. Double and triple manganites, ferrites and chromites of alkali, alkaline earth and rare earth metals. Moscow, Nauchnyi mir, 2017, 416 p. (in Russian).
(22). A.S. Morachevsky, I.V. Sladkov. Thermo-dynamic calculations in metallurgy. Reference. Moscow, Metallurgy, 1985, 137 p. (in Russian).
(23). A.S. Morachevsky, I.V. Sladkov. Guideline to performance of thermodynamic calculations. Leningrad, LPI named after M.I. Kalinin, 1975, 67 p. (in Russian).
(24). V.N. Kumok, Problem of coordination of methods of assessment of thermodynamic characteristics. Direct and return problems of chemical thermodynamics. Novosibirsk, 1987, 108‒123 (in Russian).
(25). Ya.I. Gerassimov, A.N. Krestovnikov, S.I. Gorbov. Chemical thermodynamics in nonferrous metallurgy. Moscow, Metallurgizdat, 1973, 296 p. (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.