Study of the Properties of Qxide Coatings Formed on Titanium by Plasma Electrolytic Oxidation Method
DOI:
https://doi.org/10.18321/ectj930Keywords:
micro arc oxidation, plasma electrolytic oxidation, oxide coating, tribological tests, microhardness, electrolyteAbstract
The development of the modern industry requires to develop high-performance, environmentally friendly methods for the production of light structural material surface coatings. The use of products and structures made of titanium and its alloys with high wear resistance and corrosion resistance prevails in many industries, in particular in the aerospace industry, shipbuilding, and transport engineering. Nowadays, the application of the plasma electrolytic oxidation method, a promising metal surface treatment method, is of increasing interest. Besides this method is called microarc oxidation. The objective of this work is to study the properties of oxide coatings obtained on titanium alloys under the influence of rapid pulsed effects of the plasma electrolytic oxidation process. Oxide composite coatings were obtained in various electrolyte solutions in this work. Oxide coatings are characterized by high wear resistance. It has been established in tribological tests that the wear resistance of the coating is increased by 2–15 times compared with an uncoated sample. The friction coefficient curves obtained for coated samples show that there is no destruction of the coating to the base. The breaking-in area is marked in the curves. The friction surfaces are adjusted to each other and go to a stable friction mode. The latter results in the friction coefficient decrease and wear rate decrease.
References
(1). M.P. Shankar, R. Sokkalingam, K. Sivaprasad, Veerappan Muthupandi, Advanced Materials Research 1148 (2018) 159‒164. Crossref
(2). P.V. Kumar, B. Shantanu, Reviews of Adhesion and Adhesives 5 (2017) 79‒104. Crossref
(3). J. Jin, X.-H. Li, J.-W. Wu, B.-Y. Lou, Rare Met. 37 (2018) 26‒34. Crossref
(4). A.I. Mamaev, V.A. Mamaeva, N.F. Kolenchin, A.K. Chubenko, Y.B. Kovalskaya, T.A. Konstantinova, Y.N. Dolgova, E.Y. Beleckaya, Russ. Phys. J. 58 (2016) 1720‒1725. Crossref
(5). E.A. Koblova, A.Yu. Ustinov, V.S. Rudnev, I.V. Lukiyanchuk, I.V. Chernykh, J. Struct. Chem. 58 (2017) 1129‒1136. Crossref
(6). Zhiyu Yan, Manting Men, Bing Sun, Qiaomin Wang, Yue Han, Mi Wen, J. Adv. Oxid. Technol. 20 (2017) 190‒197. Crossref
(7). V.I. Kalita, A.I. Mamaev, V.A. Mamaeva, D.A. Malanin, D.I. Komlev, A.G. Gnedovets, V.V. Novochadov, V.S. Komlev, A.A. Radyuk, Inorg. Mater. Appl. Res. 7 (2016) 376‒387. Crossref
(8). B.L. Krit, V.A. Ludin, N.V. Morozova, A.V. Apelfeld, Surf. Engin. Appl. Electrochem. 54 (2018) 227‒246. Crossref
(9). T. Zhou, Z.-B. Qin, Q. Luo, Q. Zhang, B. Shen, W.-B. Hu, L. Liu, Acta Metall. Sinic. 31 (2018) 1109‒1120. Crossref
(10). T. Zhou, Y. Ding, Q. Luo, Z. Qin, Q. Zhang, B. Shen, W. Hu, L. Liu, J. Mater. Eng. Perform. 27 (2018) 5489‒5499. Crossref
(11). N.D. Sakhnenko, M.V. Ved, A.V. Karakurkchi, Prot. Met. Phys. Chem. Surf. 53 (2017) 1082‒1090. Crossref
(12). Zh.M. Ramazanova, K.Zh. Kirgizbayeva, A.U. Akhmedyanov, M.A. Jaxymbetova, D. Yergaliyev, A. Zhakupova, O. Abdirashev. International Journal of Mechanical Engineering and Technology 9 (2018) 709–721.
(13). V.V. Shtefan, A.Yu. Smirnova, Prot. Met. Phys. Chem. Surf. 53 (2017) 322–328. Crossref
(14). F. Karabudak, R. Yeşildal, E.E. Şűkűroğlu, S. Şűkűroğlu, H. Zamanlou, N. Dikbaş, F. Bayındır, S. Şen, Y. Totik, Arab. J. Sci. Eng. 42 (2017) 2329–2339. Crossref
(15). V.A. Koshuro, M.A. Fomina, I.V. Rodionov, A.A. Fomin, Biomed. Eng. 50 (2016) 54–57. Crossref
(16). M. Shi, H. Li, Surf. Engin. Appl. Electrochem. 52 (2016) 32–42. Crossref
(17). M. Shi, H. Li, Prot. Met. Phys. Chem. Surf. 52 (2016) 900‒909. Crossref
(18). A.I. Mamaev, V.A. Mamaeva, V.I. Kalita, D.I. Komlev, A.A. Radyuk, A.Yu. Iyannikov, A.B. Mikhaylova, A.S. Baikin, M.A. Sevostyanov, N.A. Amelchenko, Inorg. Mater. Appl. Res. 9 (2018) 855‒860. Crossref
(19). A.I. Mamaev, V.A. Mamaeva, E.Yu. Beletskaya, Russ. Phys. J. 60 (2017) 600–608. Crossref
(20). M. Roknian, A. Fattah-Alhosseini, S.O. Gashti, J. Materi. Eng. Perform. 27 (2018) 1343–1351. Crossref
(21). A.I. Mamaev, V.A. Mamaeva. High current processes in electrolyte solutions. Novosibirsk, SB RAS Publ., 2005, 255 p.
(22). I.V. Suminov, A.V. Epelfeld, V.B. Lyudin, B.L. Krit, A.M. Borisov. Microarc oxidation (theory, technology, eduipment). Moscow, ECOMET Publ., 2005, 368 p.
(23). A.I. Mamaev, T.I. Dorofeeva, V.A. Mamaeva, V.N. Borikov, Yu.Yu. Budnitskaya, A.A. Makarov. Voltammetry Characteristics of Ceramic Coatings Obtained bu Pulse Microplasma Processes on Aluminium, Titanium and Magnesium Alloys. Proceedings 7th International Conference on Modification of Materials with Particle Beams and Plasma Flows. Tomsk, 2004, p. 340-342.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.