Effect of Different Pore-Forming Additives on the Formation of PVDF Microporous Membranes for Bucky-Gel Actuator

  • O. S. Morozov Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
  • S. S. Shachneva Faculty of Materials Science, Lomonosov Moscow State University, 1-73 Leninskie Gory, Moscow 119991, Russia
  • B. A. Bulgakov Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; Institute of New Carbon Materials and Technologies (INCMaT), 1-11 Leninskie Gory, Moscow 119991, Russia
  • A. V. Babkin Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; Institute of New Carbon Materials and Technologies (INCMaT), 1-11 Leninskie Gory, Moscow 119991, Russia
  • A. V. Kepman Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; Institute of New Carbon Materials and Technologies (INCMaT), 1-11 Leninskie Gory, Moscow 119991, Russia

Abstract

 The microporous polyvinylidene fluoride (PVDF) membranes were prepared by the solvent evaporation method using 50 wt.% of different pore-forming additives: poly(1-ethyl-3-vinylimidazolium tetrafluoroborate) (PIL-BF4), polyethylene glycol 3000 (PEG-3K) and 40000 (PEG-40K), dibutyl phthalate (DBP). The influence of used additive on morphology, porosity, degree of crystallinity, tensile properties, electrolyte uptake and ionic conductivity of the membranes were investigated. The maximum electrolyte uptake of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) was 184 wt.% for the membrane prepared with PEG-40K, however, the membrane was fragile and unsuitable for practical use. The remaining membranes showed approximately the same porosity (45‒48%) and electrolyte uptakes (169‒175%). At the same time, the membranes significantly differed in mechanical properties and ionic conductivity. The membrane prepared with PIL-BF4, unlike others, has a sponge-like structure and demonstrated high mechanical properties, namely tensile strength is 17.7 MPa and fracture strain is 132.5%. Bucky gel actuators were fabricated using membranes prepared with different additives. The blocking force of the actuators based on membranes with different additives decreased in the sequence of PIL-BF4, DBP and PEG. The actuator based on the membrane prepared with PIL-BF4 demonstrates a blocking force of 5.7 mN and a deformation of 1.35 % at 3 V DC.

References

(1). Z.-W. Ouyang, E.-C. Chen, T.-M. Wu, Materials 8 (2015) 4553–4564. Crossref

(2). B. Jaleh, N. Gavar, P. Fakhri, N. Muensit, S.M. Taheri, Membranes 5 (2015) 1–10. Crossref

(3). C.S. Ong, W.J. Lau, B. Al-anzi, A.F. Ismail, Membrane Water Treatment 8 (2017) 211–223. Crossref

(4). R. Faiz, M. Fallanza, S. Boributh, R. Jiraratananon, I. Ortiz, K. Li, Chem. Eng. Sci. 94 (2013) 108–119. Crossref

(5). V.K. Tiwari, P.K. Kulriya, D.K. Avasthi, P. Maiti, ACS Appl. Mater. Interfaces 1 (2009) 311–318. Crossref

(6). Guo-dong Kang, Yi-ming Cao, J. Memb. Sci. 463 (2014) 145–165. Crossref

(7). Z. Xie, M. Hoang, T. Duong, D. Ng, P. Singh, P. Ray, A.V.R. Reddy, K. Parashuram, S. Maurya, J. Mater. Sci. Res. 1 (2011) 37–44. Crossref

(8). A.C.M. Franken, J.A.M. Nolten, M.H.V. Mulder, D. Bargeman, C.A. Smolders, J. Memb. Sci. 33 (1987) 315–328. Crossref

(9). Y. Zhang, J. Sunarso, S. Liu, R. Wang, Int. J. Greenh. Gas Control. 12 (2013) 84–107. Crossref

(10). R. Khalilpour, K. Mumford, H. Zhai, A. Abbas, G. Stevens, E.S. Rubin, J. Clean. Prod. 103 (2015) 286–300. Crossref

(11). Y. Gao, Nanoscale Res. Lett. 12 (2017) 387. Crossref

(12). Y. Xin, H. Sun, H. Tian, C. Guo, X. Li, S. Wang, C. Wang, Ferroelectrics 502 (2016) 28–42. Crossref

(13). R. Mejri, J.C. Dias, S.B. Hentati, M.S. Martins, C.M. Costa, S. Lanceros-Mendez, J. Non. Cryst. Solids 453 (2016) 8–15. Crossref

(14). R.Hagiwara, J.S. Lee, Electrochemistry 75 (2007) 23–34. Crossref

(15). S.S. Zhang, J. Power Sources 164 (2007) 351– 364. Crossref

(16). Q. Cheng, Z. Cui, J. Li, S. Qin, F. Yan, J. Li, J. Power Sources 266 (2014) 401–413. Crossref

(17). P. Arora, Z. Zhang, Chem. Rev. 104 (2004) 4419–4462. Crossref

(18). J.T. Jung, J.F. Kim, H.H. Wang, E. di Nicolo, E. Drioli, Y.M. Lee, J. Memb. Sci. 514 (2016) 250–263. Crossref

(19). C.H. Du, Y.Y. Xu, B.K. Zhu, J. Appl. Polym. Sci. 114 (2009) 3645–3651. Crossref

(20). Z.-C. Zhang, C.-G. Guo, J-.L. Lv, Polymers & Polymer Composites 23 (2015) 175–180.

(21). J.-H. Kim, K.-H. Lee, J. Memb. Sci. 138 (1998) 153–163. Crossref

(22). J.H. Cao, B.K. Zhu, Y.Y. Xu, J. Memb. Sci. 281 (2006) 446–453. Crossref

(23). H. Bin Li, W.Y. Shi, Y.F. Zhang, D.Q. Liu, X.F. Liu, Polymers 6 (2014) 1846–1861. Crossref

(24). L. Guo, Y. Liu, C. Zhang, J. Chen, J. Memb. Sci. 372 (2011) 314–321. Crossref

(25). R. Sahrash, A. Siddiqa, H. Razzaq, T. Iqbal, S. Qaisar, Heliyon 4 (2018) E00847. Crossref

(26). T. Fukushima, K. Asaka, A. Kosaka, T. Aida, Angew. Chem. Int. Edit. 44 (2005) 2410–2413. Crossref

(27). O. Kim, S.Y. Kim, B. Park, W. Hwang, M.J. Park, Macromolecules 47 (2014) 4357–4368. Crossref

(28). O.S. Morozov, S.S. Shachneva, A.V. Kepman, IOP Conf. Ser. Mater. Sci. Eng. 683 (2019) 012060. Crossref

(29). W. Ma, J. Zhang, X. Wang, S. Wang, Appl. Surf. Sci. 253 (2007) 8377–8388. Crossref

(30). D.L. Chinaglia, R. Gregorio, J.C. Stefanello, R.A.P. Altafim, W. Wirges, F. Wang, R. Gerhard, J. Appl. Polym. Sci. 116 (2010) 785–791. Crossref

(31). P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39 (2014) 683–706. Crossref

(32). T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, J. Memb. Sci. 210 (2002) 315–329. Crossref

(33). E. Quartarone, P. Mustarelli, A. Magistris, J. Phys. Chem. B. 106 (2002) 10828–10833. Crossref

(34). H. Na, Q. Li, H. Sun, C. Zhao, X. Yuan, Polym. Eng. Sci. 49 (2009) 1291–1298. Crossref

(35). K. Mukai, K. Asaka, K. Kiyohara, T. Sugino, I. Takeuchi, T. Fukushima, T. Aida, Electrochim. Acta 53 (2008) 5555–5562. Crossref

(36). H. Tamagawa, K. Yagasaki, F. Nogata, J. Appl. Phys. 92 (2002) 7614–7618. Crossref

(37). K. Asaka, K. Mukai, I. Takeuchi, K. Kiyohara, T. Sugino, N. Terasawa, K. Hata, T. Fukushima, T. Aida, Proc. SPIE 7037, Carbon Nanotubes and Associated Devices (2008) 703710. Crossref

(38). A. Simaite, B. Tondu, F. Mathieu, P. Souéres, C. Bergaud, Proc. SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD) (2015) 94301E. Crossref

Published
2020-06-30
How to Cite
[1]
O. Morozov, S. Shachneva, B. Bulgakov, A. Babkin, and A. Kepman, “Effect of Different Pore-Forming Additives on the Formation of PVDF Microporous Membranes for Bucky-Gel Actuator”, Eurasian Chem.-Technol. J., vol. 22, no. 2, pp. 107-115, Jun. 2020.
Section
Articles