Effect of Different Pore-Forming Additives on the Formation of PVDF Microporous Membranes for Bucky-Gel Actuator

Authors

  • O. S. Morozov Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
  • S. S. Shachneva Faculty of Materials Science, Lomonosov Moscow State University, 1-73 Leninskie Gory, Moscow 119991, Russia
  • B. A. Bulgakov Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; Institute of New Carbon Materials and Technologies (INCMaT), 1-11 Leninskie Gory, Moscow 119991, Russia
  • A. V. Babkin Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; Institute of New Carbon Materials and Technologies (INCMaT), 1-11 Leninskie Gory, Moscow 119991, Russia
  • A. V. Kepman Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia; Institute of New Carbon Materials and Technologies (INCMaT), 1-11 Leninskie Gory, Moscow 119991, Russia

DOI:

https://doi.org/10.18321/ectj957

Abstract

 The microporous polyvinylidene fluoride (PVDF) membranes were prepared by the solvent evaporation method using 50 wt.% of different pore-forming additives: poly(1-ethyl-3-vinylimidazolium tetrafluoroborate) (PIL-BF4), polyethylene glycol 3000 (PEG-3K) and 40000 (PEG-40K), dibutyl phthalate (DBP). The influence of used additive on morphology, porosity, degree of crystallinity, tensile properties, electrolyte uptake and ionic conductivity of the membranes were investigated. The maximum electrolyte uptake of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) was 184 wt.% for the membrane prepared with PEG-40K, however, the membrane was fragile and unsuitable for practical use. The remaining membranes showed approximately the same porosity (45‒48%) and electrolyte uptakes (169‒175%). At the same time, the membranes significantly differed in mechanical properties and ionic conductivity. The membrane prepared with PIL-BF4, unlike others, has a sponge-like structure and demonstrated high mechanical properties, namely tensile strength is 17.7 MPa and fracture strain is 132.5%. Bucky gel actuators were fabricated using membranes prepared with different additives. The blocking force of the actuators based on membranes with different additives decreased in the sequence of PIL-BF4, DBP and PEG. The actuator based on the membrane prepared with PIL-BF4 demonstrates a blocking force of 5.7 mN and a deformation of 1.35 % at 3 V DC.

References

(1). Z.-W. Ouyang, E.-C. Chen, T.-M. Wu, Materials 8 (2015) 4553–4564. Crossref DOI: https://doi.org/10.3390/ma8105371

(2). B. Jaleh, N. Gavar, P. Fakhri, N. Muensit, S.M. Taheri, Membranes 5 (2015) 1–10. Crossref DOI: https://doi.org/10.3390/membranes5010001

(3). C.S. Ong, W.J. Lau, B. Al-anzi, A.F. Ismail, Membrane Water Treatment 8 (2017) 211–223. Crossref DOI: https://doi.org/10.12989/mwt.2017.8.3.211

(4). R. Faiz, M. Fallanza, S. Boributh, R. Jiraratananon, I. Ortiz, K. Li, Chem. Eng. Sci. 94 (2013) 108–119. Crossref DOI: https://doi.org/10.1016/j.ces.2013.02.048

(5). V.K. Tiwari, P.K. Kulriya, D.K. Avasthi, P. Maiti, ACS Appl. Mater. Interfaces 1 (2009) 311–318. Crossref DOI: https://doi.org/10.1021/am800040q

(6). Guo-dong Kang, Yi-ming Cao, J. Memb. Sci. 463 (2014) 145–165. Crossref DOI: https://doi.org/10.1016/j.memsci.2014.03.055

(7). Z. Xie, M. Hoang, T. Duong, D. Ng, P. Singh, P. Ray, A.V.R. Reddy, K. Parashuram, S. Maurya, J. Mater. Sci. Res. 1 (2011) 37–44. Crossref DOI: https://doi.org/10.5539/jmsr.v1n1p37

(8). A.C.M. Franken, J.A.M. Nolten, M.H.V. Mulder, D. Bargeman, C.A. Smolders, J. Memb. Sci. 33 (1987) 315–328. Crossref DOI: https://doi.org/10.1016/S0376-7388(00)80288-4

(9). Y. Zhang, J. Sunarso, S. Liu, R. Wang, Int. J. Greenh. Gas Control. 12 (2013) 84–107. Crossref DOI: https://doi.org/10.1016/j.ijggc.2012.10.009

(10). R. Khalilpour, K. Mumford, H. Zhai, A. Abbas, G. Stevens, E.S. Rubin, J. Clean. Prod. 103 (2015) 286–300. Crossref DOI: https://doi.org/10.1016/j.jclepro.2014.10.050

(11). Y. Gao, Nanoscale Res. Lett. 12 (2017) 387. Crossref DOI: https://doi.org/10.1186/s11671-017-2150-5

(12). Y. Xin, H. Sun, H. Tian, C. Guo, X. Li, S. Wang, C. Wang, Ferroelectrics 502 (2016) 28–42. Crossref DOI: https://doi.org/10.1080/00150193.2016.1232582

(13). R. Mejri, J.C. Dias, S.B. Hentati, M.S. Martins, C.M. Costa, S. Lanceros-Mendez, J. Non. Cryst. Solids 453 (2016) 8–15. Crossref DOI: https://doi.org/10.1016/j.jnoncrysol.2016.09.014

(14). R.Hagiwara, J.S. Lee, Electrochemistry 75 (2007) 23–34. Crossref DOI: https://doi.org/10.5796/electrochemistry.75.23

(15). S.S. Zhang, J. Power Sources 164 (2007) 351– 364. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2006.10.065

(16). Q. Cheng, Z. Cui, J. Li, S. Qin, F. Yan, J. Li, J. Power Sources 266 (2014) 401–413. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2014.05.056

(17). P. Arora, Z. Zhang, Chem. Rev. 104 (2004) 4419–4462. Crossref DOI: https://doi.org/10.1021/cr020738u

(18). J.T. Jung, J.F. Kim, H.H. Wang, E. di Nicolo, E. Drioli, Y.M. Lee, J. Memb. Sci. 514 (2016) 250–263. Crossref DOI: https://doi.org/10.1016/j.memsci.2016.04.069

(19). C.H. Du, Y.Y. Xu, B.K. Zhu, J. Appl. Polym. Sci. 114 (2009) 3645–3651. Crossref DOI: https://doi.org/10.1002/app.30105

(20). Z.-C. Zhang, C.-G. Guo, J-.L. Lv, Polymers & Polymer Composites 23 (2015) 175–180. DOI: https://doi.org/10.1177/096739111502300308

(21). J.-H. Kim, K.-H. Lee, J. Memb. Sci. 138 (1998) 153–163. Crossref DOI: https://doi.org/10.1016/S0376-7388(97)00224-X

(22). J.H. Cao, B.K. Zhu, Y.Y. Xu, J. Memb. Sci. 281 (2006) 446–453. Crossref DOI: https://doi.org/10.1016/j.memsci.2006.04.013

(23). H. Bin Li, W.Y. Shi, Y.F. Zhang, D.Q. Liu, X.F. Liu, Polymers 6 (2014) 1846–1861. Crossref DOI: https://doi.org/10.3390/polym6061846

(24). L. Guo, Y. Liu, C. Zhang, J. Chen, J. Memb. Sci. 372 (2011) 314–321. Crossref DOI: https://doi.org/10.1016/j.memsci.2011.02.014

(25). R. Sahrash, A. Siddiqa, H. Razzaq, T. Iqbal, S. Qaisar, Heliyon 4 (2018) E00847. Crossref DOI: https://doi.org/10.1016/j.heliyon.2018.e00847

(26). T. Fukushima, K. Asaka, A. Kosaka, T. Aida, Angew. Chem. Int. Edit. 44 (2005) 2410–2413. Crossref DOI: https://doi.org/10.1002/anie.200462318

(27). O. Kim, S.Y. Kim, B. Park, W. Hwang, M.J. Park, Macromolecules 47 (2014) 4357–4368. Crossref DOI: https://doi.org/10.1021/ma500869h

(28). O.S. Morozov, S.S. Shachneva, A.V. Kepman, IOP Conf. Ser. Mater. Sci. Eng. 683 (2019) 012060. Crossref DOI: https://doi.org/10.1088/1757-899X/683/1/012060

(29). W. Ma, J. Zhang, X. Wang, S. Wang, Appl. Surf. Sci. 253 (2007) 8377–8388. Crossref DOI: https://doi.org/10.1016/j.apsusc.2007.04.001

(30). D.L. Chinaglia, R. Gregorio, J.C. Stefanello, R.A.P. Altafim, W. Wirges, F. Wang, R. Gerhard, J. Appl. Polym. Sci. 116 (2010) 785–791. Crossref DOI: https://doi.org/10.1002/app.31488

(31). P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39 (2014) 683–706. Crossref DOI: https://doi.org/10.1016/j.progpolymsci.2013.07.006

(32). T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, J. Memb. Sci. 210 (2002) 315–329. Crossref DOI: https://doi.org/10.1016/S0376-7388(02)00407-6

(33). E. Quartarone, P. Mustarelli, A. Magistris, J. Phys. Chem. B. 106 (2002) 10828–10833. Crossref DOI: https://doi.org/10.1021/jp0139843

(34). H. Na, Q. Li, H. Sun, C. Zhao, X. Yuan, Polym. Eng. Sci. 49 (2009) 1291–1298. Crossref DOI: https://doi.org/10.1002/pen.21368

(35). K. Mukai, K. Asaka, K. Kiyohara, T. Sugino, I. Takeuchi, T. Fukushima, T. Aida, Electrochim. Acta 53 (2008) 5555–5562. Crossref DOI: https://doi.org/10.1016/j.electacta.2008.02.113

(36). H. Tamagawa, K. Yagasaki, F. Nogata, J. Appl. Phys. 92 (2002) 7614–7618. Crossref DOI: https://doi.org/10.1063/1.1516269

(37). K. Asaka, K. Mukai, I. Takeuchi, K. Kiyohara, T. Sugino, N. Terasawa, K. Hata, T. Fukushima, T. Aida, Proc. SPIE 7037, Carbon Nanotubes and Associated Devices (2008) 703710. Crossref DOI: https://doi.org/10.1117/12.794503

(38). A. Simaite, B. Tondu, F. Mathieu, P. Souéres, C. Bergaud, Proc. SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD) (2015) 94301E. Crossref DOI: https://doi.org/10.1117/12.2083936

Downloads

Published

30-06-2020

How to Cite

Morozov, O. S., Shachneva, S. S., Bulgakov, B. A., Babkin, A. V., & Kepman, A. V. (2020). Effect of Different Pore-Forming Additives on the Formation of PVDF Microporous Membranes for Bucky-Gel Actuator. Eurasian Chemico-Technological Journal, 22(2), 107–115. https://doi.org/10.18321/ectj957

Issue

Section

Articles