Digital Modeling Accuracy of Direct Metal Laser Sintering Process

Authors

  • T. Dmitriyev Institute of Combustion Problems, 172 Bogenbai Batyr Str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • S. Manakov al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj959

Keywords:

Maraging steel, Metal additive manufacturing, Direct Metal Laser Sintering, Simulation, 3D printing

Abstract

Products obtained by metal additive manufacturing have exceptional strength properties that can be compared with forged parts, and in some cases, even surpass them. Also, the cost and time of parts manufacture are reduced by two or even three times. Because of this, today’s leading corporations in the field of aerospace industry introducing this technology to its production. To avoid loss of funds and time, the processes of additive manufacturing should be predictable. Simufact Additive is specialized software for additive manufacturing process simulation is dedicated to solving critical issues with metal 3D printing, including significantly reducing distortion; minimize residual stress to avoid failures; optimize the build-up orientation and the support structures. It also enables us to compare simulated parts with the printed sample or measure it as a reference. In other words, the simulated deformations can be estimated concerning the reference geometry. The current work aims to study the deformation of the sample during the Direct Metal Laser Sintering (DMLS) process made from Maraging Steel MS1. Simufact Additive software was used to simulate the printing process. The main idea is to compare the results of the simulation and the real model. EOS M290 metal 3D printer was used to make a test specimen.

References

(1). Y. Du, J. Chen, Q. Meng, Y. Dou, J. Xu, S.Z. Shen, Vacuum 178 (2020) 109384. Crossref DOI: https://doi.org/10.1016/j.vacuum.2020.109384

(2). Z. Mansurov, Eurasian Chem. Techn. J. 18 (2016) 251‒261. Crossref DOI: https://doi.org/10.18321/ectj482

(3). C.A. Chatham, T.E. Long, C.B. Williams, Prog. Polym. Sci. 93 (2019) 68‒95. Crossref DOI: https://doi.org/10.1016/j.progpolymsci.2019.03.003

(4). Z. Mansurov, T. Dmitriyev, E. Aliyev, Ch. Daulbayev, Additive technologies (3D printing): monograph, Kazakh University, 2017, 192 p. ISBN: 978-601-04-3092-1. (In Russ.).

(5). N. Horvath, A. Honeycutt, M.A. Davies, CIRP Annals 69 (2020) 509‒512. Crossref DOI: https://doi.org/10.1016/j.cirp.2020.04.079

(6). B. Alliot-Licht, A. Jean, M. Gregoire, Arch. Oral Biol. 39 (1994) 481–489. Crossref DOI: https://doi.org/10.1016/0003-9969(94)90144-9

(7). V. Laghi, M. Palermo, G. Gasparini, V.A. Girelli, T. Trombetti, J. Constr. Steel Res. (2019) 105858 (in press). Crossref DOI: https://doi.org/10.1016/j.jcsr.2019.105858

(8). M. Mazur, T. Bhatelia, B. Kuan, J. Patel, P.A. Webley, M. Brandt, V. Pareek, R. Utikar, Chemical Engineering and Processing - Process Intensification 143 (2019) 107595. Crossref DOI: https://doi.org/10.1016/j.cep.2019.107595

(9). A. Li, X. Liu, X. Wan, Y. Yang, Int. Commun. Heat Mass 116 (2020) 104664. Crossref DOI: https://doi.org/10.1016/j.icheatmasstransfer.2020.104664

(10). A. du Plessis, E. Macdonald, Additive Manufacturing 34 (2020) 101191. Crossref DOI: https://doi.org/10.1016/j.addma.2020.101191

(11). E. Mirkoohi, D.E. Sievers, H. Garmestani, S.Y. Liang, CIRP Journal of Manufacturing Science and Technology 28 (2020) 52–67. Crossref DOI: https://doi.org/10.1016/j.cirpj.2020.01.002

(12). D. Powell, A. Rennie, L. Geekie, N. Burns, Journal of Cleaner Production 268 (2020) 122077. Crossref DOI: https://doi.org/10.1016/j.jclepro.2020.122077

(13). M. Kaminski, E. Loth, D.T. Griffith, C. (Chris) Qin, Renew. Energ. 148 (2020) 639–650. Crossref DOI: https://doi.org/10.1016/j.renene.2019.10.152

(14). Z. Domagała, J. Domański, A. Zimmer, A. Tarczynska, J. Sliwa, B. Gworys, Ann. Anat. 228 (2020) 151436. Crossref DOI: https://doi.org/10.1016/j.aanat.2019.151436

(15). H. Huang, W. Liu, Z. Liu, CIRP Annals 69 (2020) 33-36. Crossref DOI: https://doi.org/10.1016/j.cirp.2020.04.085

(16). E. Cyr, A. Lloyd, M. Mohammadi, J. Manuf. Process. 35 (2018) 289–294. Crossref DOI: https://doi.org/10.1016/j.jmapro.2018.08.015

(17). E.M. Sanfilippo, F. Belkadi, A. Bernard, Computers Ind. 109 (2019) 182–194. Crossref DOI: https://doi.org/10.1016/j.compind.2019.03.006

(18). T. Grover, A. Pandey, S.T. Kumari, A. Awasthi, B. Singh, P. Dixit, P. Singhal, K.K. Saxena, Materials Today: Proceedings 26 (2020) 3071- 3080. Crossref DOI: https://doi.org/10.1016/j.matpr.2020.02.636

(19). D. Zindani, K. Kumar, International Journal of Lightweight Materials and Manufacture 2 (2019) 267–278. Crossref DOI: https://doi.org/10.1016/j.ijlmm.2019.08.004

(20). L. Li, A. Haghighi, Y. Yang, J. Manuf. Process. 33 (2018) 150–160. Crossref DOI: https://doi.org/10.1016/j.jmapro.2018.05.008

(21). National Institute of Standards and Technology Technical Note 1801, Lessons learned in establishing the NIST Metal Additive Manufacturing laboratory, (June 2013), 40 p.

Downloads

Published

30-06-2020

How to Cite

Dmitriyev, T., & Manakov, S. (2020). Digital Modeling Accuracy of Direct Metal Laser Sintering Process. Eurasian Chemico-Technological Journal, 22(2), 123–127. https://doi.org/10.18321/ectj959

Issue

Section

Article