Antibacterial Activity of Synthesized Derivatives of Purpurin Containing Cyсlopropane and Cyclobutane Fragment

Authors

  • Т. V. Kharlamova JSC “Institute of Chemical Sciences named after A.B. Becturov”, 106 Ualikhanov str., 050010, Almaty, Kazakhstan
  • A. V. Gabdrakipov JSC “Institute of Chemical Sciences named after A.B. Becturov”, 106 Ualikhanov str., 050010, Almaty, Kazakhstan
  • P. B. Seidakhmetova JSC “Institute of Chemical Sciences named after A.B. Becturov”, 106 Ualikhanov str., 050010, Almaty, Kazakhstan
  • K. D. Praliyev JSC “Institute of Chemical Sciences named after A.B. Becturov”, 106 Ualikhanov str., 050010, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj972

Keywords:

Purpurin, Acid chlorides of saturated cyclic carboxylic acids, Antimicrobial activity

Abstract

The present study is a continuation of the scientific research works for the synthesis of anthraquinonе-containing derivatives with cyclic ring systems by the interaction of 1,2,4-trihydroxyanthraquinone (purpurin) with cyclopropanecarboxylic acid chloride and cyclobutanecarboxylic acid chloride by using the ultrasonic treatment. Esters of purpurin, studied for antibacterial activity in museum test strains of microorganisms (Staphylococcus aureus ATCC 6538-P, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Pseudomonas aeruginosa АТСС 27853, Сandida albicans АТСС 10231) in vitro with the determination of the minimum inhibitory concentration (MIC) value. The study revealed that the cyclopropane substituent exhibits moderate antibacterial activity against Bacillus subtilis ATCC 6633. While with the cyclobutane moiety it had a weak effect with respect to Pseudomonas aeruginosa ATCC strain. It has been found that the compounds with the cyclopropane and cyclobutane fragment have possessed antimicrobial activity in relation to strains of microorganisms Staphylococcus aureus АТСС 6538 for which the MIC value was 62.5 μg/ml.

References

(1). World Health Organization (WHO) Glob¬al Action Plan on Antimicrobial Resis¬tance (2015). URL

(2). Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (2016) (Review on Antimicrobial Resistance). URL

(3). M.S. Morehead, C. Scarbrough, Primary Care: Clinics in Office Practice 45 (2018) 467‒484. Crossref

(4). I.A. Rather, B-C. Kim, V.K. Bajpai, Y-H. Park, Saudi J. Biol. Sci. 24 (2017) 808‒812. Crossref

(5). D.G. Brown, T. Lister, T.L. May-Dracka, Bioorg. Med. Chem. Lett. 24 (2014) 413‒418. Crossref

(6). S.E. Rossiter, M.H. Fletcher, W.M. Wuest, Chem. Rev. 117 (2017) 12415‒12474. Crossref

(7). R. Barbieri, E. Coppo, A. Marchese, M. Daglia, E. Sobarzo-Sánchez, S.F. Nabavi, S.M. Nabavi, Microbiol. Res. 196 (2017) 44‒68. Crossref

(8). D.J. Newman, G.M. Cragg, J. Nat. Prod. 79 (2016) 629‒661. Crossref

(9). D.G. Brown, T. Lister, T.L. May-Dracka Bioorg. Med. Chem. Lett. 24 (2014) 413‒418. Crossref

(10). M. Ayaz, F. Ullah, A. Sadiq, F. Ullah, M. Ovais, J. Ahmed, H.P. Devkota, Chem.-Biol. Interact. 308 (2019) 294‒303. Crossref

(11). A. Sharma, R.C. Flores-Vallejo, A. Cardoso- Taketa, M.L. Villarreal, J. Ethnopharmacol. 208 (2017) 264‒329. Crossref

(12). M. Vambe, A.O. Aremu, J.C. Chukwujekwu, J.F. Finnie, J. Van Staden, S. Afr. J. Bot. 114 (2018) 250‒259. Crossref

(13). J.J. Nair, A. Wilhelm, S.L. Bonnet, J. Staden, Bioorg. Med. Chem. Lett. 27(2017) 4943‒4951. Crossref

(14). I. Gutiérrez-del-Río, J. Fernández, F. Lombó, Int. J. Antimicrob. Agents 52 (2018) 309‒315. Crossref

(15). A. Sweidan, M. Chollet-Krugler, A. Sauvager, A. Chokr, M. Bonnaure-Mallet, P. Weghe, S. Tomasi, L. Bousarghin, Fitoterapia 121 (2017) 164‒169. Crossref

(16). S. Nalini, D.S. Richard, S.U.M. Riyaz, G. Kavitha, D. Inbakandan, Int. J. Biol. Macromol. 115 (2018) 696‒710. Crossref

(17). G. Diaz-Muñoz, I.L. Miranda, S.K. Sartori, D.C. de Rezende, M.A.N. Diaz, Studies in Natural Products Chemistry 58 (2018) 313–338. Crossref

(18). J. Duval, V. Pecher, M. Poujol, E. Lesellier, Ind. Crop. Prod. 94 (2016) 812‒833. Crossref

(19). Encyclopedia of Medicines 2017. RLS. Issue 25. (Ed. G.L. Vyshkovskogo. [2017.]) Vedanta, Moskva, 2016, 1288 p. (in Russ.).

(20). T.V. Kharlamova, Chemical Journal of Kazakhstan [Khimicheskij zhurnal Kazahstana], 4 (2018) 185‒215 (in Russ.).

(21). T.V. Kharlamova, R.B. Seidakhmetova, K.D. Praliyev, Eurasian Chem.-Technol. J. 22 (2020) 43‒49. Crossref

(22). T.V. Kharlamova, Chem. Nat. Compd. 43 (2007) 391‒394. Crossref

(23). T.V. Kharlamova, Chem. Nat. Compd. 45 (2009) 629‒631. Crossref

(24). T.V. Kharlamova, Chem. Nat. Compd. 45 (2009) 500‒503. Crossref

(25). K.A. Kumar, Int. J. Pharm. Pharm. Sci. 5 (2013) 467‒472.

(26). A. Kleemann, J. Engel, Pharmaceutical Substances: Syntheses, Patents, Applications (4 ed.), Thieme, 2001, 2454 p.

(27). J. Salaün, Cyclopropane Derivatives and their Diverse Biological Activities. In: de Meijere A. (eds.) Small Ring Compounds in Organic Synthesis VI. Topics in Current Chemistry, 207 (2000). Crossref

(28). R Singh, Geetanjali, C.S.M.S. Chauhan, Chem. Biodivers. 1 (2004) 1241‒1264. Crossref

(29). S.R. Shirsath., S.H. Sonawane, P.R. Gogate, Chem. Eng. Process. 53 (2012)10‒23. Crossref

(30). C. Wen, J. Zhang, H. Zhang, C.S. Dzah, M. Zandile, Y. Duan, H. Ma, X. Luo, Ultrason. Sonochem. 48 (2018) 538‒549. Crossref

(31). S. Tagliapietra, E.C. Gaudino, G. Cravotto, Power Ultrasonics. Applications of High- Intensity Ultrasound, 2015, p. 997‒1022. Crossref

(32). S.V. Sancheti, P.R. Gogate, Ultrason. Sonochem. 36 (2017) 527‒543. Crossref

(33). C.M.R. Low, Ultrason. Sonochem. 2 (1995) S153‒S163. Crossref

(34). N.K. Rastogi, Crit. Rev. Food Sci. Nutr. 51 (2011) 705‒722. Crossref

(35). T.V. Kharlamova, R.B. Seidakhmetova, K.D. Praliev, Chem. Nat. Compd. 55 (2019) 622‒625. Crossref

Downloads

Published

2020-09-30

How to Cite

Kharlamova Т. V., Gabdrakipov, A. V., Seidakhmetova, P. B., & Praliyev, K. D. (2020). Antibacterial Activity of Synthesized Derivatives of Purpurin Containing Cyсlopropane and Cyclobutane Fragment. Eurasian Chemico-Technological Journal, 22(3), 213–218. https://doi.org/10.18321/ectj972

Issue

Section

Articles