Antibacterial Activity of Synthesized Derivatives of Purpurin Containing Cyсlopropane and Cyclobutane Fragment
DOI:
https://doi.org/10.18321/ectj972Keywords:
Purpurin, Acid chlorides of saturated cyclic carboxylic acids, Antimicrobial activityAbstract
The present study is a continuation of the scientific research works for the synthesis of anthraquinonе-containing derivatives with cyclic ring systems by the interaction of 1,2,4-trihydroxyanthraquinone (purpurin) with cyclopropanecarboxylic acid chloride and cyclobutanecarboxylic acid chloride by using the ultrasonic treatment. Esters of purpurin, studied for antibacterial activity in museum test strains of microorganisms (Staphylococcus aureus ATCC 6538-P, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Pseudomonas aeruginosa АТСС 27853, Сandida albicans АТСС 10231) in vitro with the determination of the minimum inhibitory concentration (MIC) value. The study revealed that the cyclopropane substituent exhibits moderate antibacterial activity against Bacillus subtilis ATCC 6633. While with the cyclobutane moiety it had a weak effect with respect to Pseudomonas aeruginosa ATCC strain. It has been found that the compounds with the cyclopropane and cyclobutane fragment have possessed antimicrobial activity in relation to strains of microorganisms Staphylococcus aureus АТСС 6538 for which the MIC value was 62.5 μg/ml.
References
(1). World Health Organization (WHO) Glob¬al Action Plan on Antimicrobial Resis¬tance (2015). URL
(2). Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (2016) (Review on Antimicrobial Resistance). URL
(3). M.S. Morehead, C. Scarbrough, Primary Care: Clinics in Office Practice 45 (2018) 467‒484. Crossref
(4). I.A. Rather, B-C. Kim, V.K. Bajpai, Y-H. Park, Saudi J. Biol. Sci. 24 (2017) 808‒812. Crossref
(5). D.G. Brown, T. Lister, T.L. May-Dracka, Bioorg. Med. Chem. Lett. 24 (2014) 413‒418. Crossref
(6). S.E. Rossiter, M.H. Fletcher, W.M. Wuest, Chem. Rev. 117 (2017) 12415‒12474. Crossref
(7). R. Barbieri, E. Coppo, A. Marchese, M. Daglia, E. Sobarzo-Sánchez, S.F. Nabavi, S.M. Nabavi, Microbiol. Res. 196 (2017) 44‒68. Crossref
(8). D.J. Newman, G.M. Cragg, J. Nat. Prod. 79 (2016) 629‒661. Crossref
(9). D.G. Brown, T. Lister, T.L. May-Dracka Bioorg. Med. Chem. Lett. 24 (2014) 413‒418. Crossref
(10). M. Ayaz, F. Ullah, A. Sadiq, F. Ullah, M. Ovais, J. Ahmed, H.P. Devkota, Chem.-Biol. Interact. 308 (2019) 294‒303. Crossref
(11). A. Sharma, R.C. Flores-Vallejo, A. Cardoso- Taketa, M.L. Villarreal, J. Ethnopharmacol. 208 (2017) 264‒329. Crossref
(12). M. Vambe, A.O. Aremu, J.C. Chukwujekwu, J.F. Finnie, J. Van Staden, S. Afr. J. Bot. 114 (2018) 250‒259. Crossref
(13). J.J. Nair, A. Wilhelm, S.L. Bonnet, J. Staden, Bioorg. Med. Chem. Lett. 27(2017) 4943‒4951. Crossref
(14). I. Gutiérrez-del-Río, J. Fernández, F. Lombó, Int. J. Antimicrob. Agents 52 (2018) 309‒315. Crossref
(15). A. Sweidan, M. Chollet-Krugler, A. Sauvager, A. Chokr, M. Bonnaure-Mallet, P. Weghe, S. Tomasi, L. Bousarghin, Fitoterapia 121 (2017) 164‒169. Crossref
(16). S. Nalini, D.S. Richard, S.U.M. Riyaz, G. Kavitha, D. Inbakandan, Int. J. Biol. Macromol. 115 (2018) 696‒710. Crossref
(17). G. Diaz-Muñoz, I.L. Miranda, S.K. Sartori, D.C. de Rezende, M.A.N. Diaz, Studies in Natural Products Chemistry 58 (2018) 313–338. Crossref
(18). J. Duval, V. Pecher, M. Poujol, E. Lesellier, Ind. Crop. Prod. 94 (2016) 812‒833. Crossref
(19). Encyclopedia of Medicines 2017. RLS. Issue 25. (Ed. G.L. Vyshkovskogo. [2017.]) Vedanta, Moskva, 2016, 1288 p. (in Russ.).
(20). T.V. Kharlamova, Chemical Journal of Kazakhstan [Khimicheskij zhurnal Kazahstana], 4 (2018) 185‒215 (in Russ.).
(21). T.V. Kharlamova, R.B. Seidakhmetova, K.D. Praliyev, Eurasian Chem.-Technol. J. 22 (2020) 43‒49. Crossref
(22). T.V. Kharlamova, Chem. Nat. Compd. 43 (2007) 391‒394. Crossref
(23). T.V. Kharlamova, Chem. Nat. Compd. 45 (2009) 629‒631. Crossref
(24). T.V. Kharlamova, Chem. Nat. Compd. 45 (2009) 500‒503. Crossref
(25). K.A. Kumar, Int. J. Pharm. Pharm. Sci. 5 (2013) 467‒472.
(26). A. Kleemann, J. Engel, Pharmaceutical Substances: Syntheses, Patents, Applications (4 ed.), Thieme, 2001, 2454 p.
(27). J. Salaün, Cyclopropane Derivatives and their Diverse Biological Activities. In: de Meijere A. (eds.) Small Ring Compounds in Organic Synthesis VI. Topics in Current Chemistry, 207 (2000). Crossref
(28). R Singh, Geetanjali, C.S.M.S. Chauhan, Chem. Biodivers. 1 (2004) 1241‒1264. Crossref
(29). S.R. Shirsath., S.H. Sonawane, P.R. Gogate, Chem. Eng. Process. 53 (2012)10‒23. Crossref
(30). C. Wen, J. Zhang, H. Zhang, C.S. Dzah, M. Zandile, Y. Duan, H. Ma, X. Luo, Ultrason. Sonochem. 48 (2018) 538‒549. Crossref
(31). S. Tagliapietra, E.C. Gaudino, G. Cravotto, Power Ultrasonics. Applications of High- Intensity Ultrasound, 2015, p. 997‒1022. Crossref
(32). S.V. Sancheti, P.R. Gogate, Ultrason. Sonochem. 36 (2017) 527‒543. Crossref
(33). C.M.R. Low, Ultrason. Sonochem. 2 (1995) S153‒S163. Crossref
(34). N.K. Rastogi, Crit. Rev. Food Sci. Nutr. 51 (2011) 705‒722. Crossref
(35). T.V. Kharlamova, R.B. Seidakhmetova, K.D. Praliev, Chem. Nat. Compd. 55 (2019) 622‒625. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.