Self-Propagating High Temperature Synthesis of MgB2 Superconductor in High-Pressure of Argon Condition

Authors

  • S. Tolendiuly al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • S. M. Fomenko The Institute of Combustion Problems, Almaty, 172 Bogenbai Batyr St., 050012, Kazakhstan
  • G. C. Dannangoda University of Texas Rio Grande Valley, Department of Physics, Brownsville-Edinburg-Harlingen, TX, 78520, USA
  • K. S. Martirosyan University of Texas Rio Grande Valley, Department of Physics, Brownsville-Edinburg-Harlingen, TX, 78520, USA

DOI:

https://doi.org/10.18321/ectj649

Abstract

Magnesium diboride can be synthesized under argon ambient, elevated or high pressures. High-pressure syntheses are promising methods for manufacturing of the bulk MgB2 superconductor material. We have been used high pressure of Ar gas in order to investigate its effect on properties of MgB2 superconductor such as critical temperature and current density. Bulk MgB2 superconductor was synthesized from elemental Mg–B powders in thermal explosion mode of self-propagating hightemperature synthesis (SHS) under argon pressure of 25 atm. XRD pattern of the as-synthesized product indicates an almost complete conversion of the reactants to the MgB2 single phase. Most of the diffractions peaks are related to the MgB2 polycrystalline bulk material. The impurity fraction is less than 24.3% in total sample and identified as MgO and MgB4 secondary phases. The positive effect of pressure of Ar gas during synthesis of MgB2 on critical current density JC has been confirmed. The critical current density of the sample was achieved in high pressure reactor was 3.8×106 A/cm2. A superconducting volume fraction of 16% under a magnetic field of 10 Oe was obtained at 5 K, indicating that the superconductivity was bulk in nature. The succeeded level of superconductor parameters of the highpressure synthesized MgB2 and the possibility to produce a large bulk products make this technology very promising for practical applications.

 

References

[1]. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Nature 410 (2001) 63–64. <a href="http://doi.org/10.1038/35065039">Crossref</a>

[2]. Da Xu, Dongliang Wang, Chen Li, Pusheng Yuan, Xianping Zhang, Chao Yao, Chiheng Dong, He Huang, Supercond. Sci. Technol. 29 (2016) 345‒351. <a href="http://doi.org/10.1088/0953-2048/29/4/045009">Crossref</a>

[3]. L.B.S. Da Silva, C.A. Rodrigues, C. Bormio- Nunes, N.F. Oliveira Jr, and D. Rodrigues Jr. Influence of the introduction and formation of artificial pinning centers on the transport properties of nanostructured Nb3Sn superconducting wires. Journal of Physics: Conference Series 167 (2009) 012012. <a href="http://doi.org/10.1088/1742-6596/167/1/012012">Crossref</a>

[4]. Durval Rodrigues Jr., Lucas B.S. da Silva, Vivian C.V. Metznera, and Eric E. Hellstromb, Physics Procedia 36 (2012) 468–474. <a href="http://doi.org/10.1016/j.phpro.2012.06.219">Crossref</a>

[5]. J. Karpinski, M Angst, J. Jun, S.M. Kazakov, R Puzniak, A Wisniewski, Supercond. Sci. Technol. 16 (2003) 34-46.

[6]. A.G. Merzhanov and I.P. Borovinskaya, Self propagating high temperature synthesis of refractory inorganic compounds. Doklady Akademii nauk SSSR [Reports of the Academy of Science of the USSR] 204 (2) (1972) 429– 432. (in Russian).

[7]. Z.A. Munir, and U. Anselmi-Tamburini, Mater. Sci. Rep. 3 (1989) 277–365. <a href="http://doi.org/10.1016/0920-2307(89)90001-7">Crossref</a>

[8]. K. Przybylski, L. Stobierski, J. Chmist, A. Kołodziejczyk, Physica C 387 (2003) 148–152. <a href="http://doi.org/10.1016/S0921-4534(03)00661-0">Crossref</a>

[9]. Kijoon H.P. Kim, W.N. Kang, Mun-Seog Kim, C.U. Jung, Hyeong-Jin Kim, Eun-Mi Choi, Min-Seok, Park & Sung-Ik Lee, "Origin of the high DC transport critical current density for the MgB2 superconductor", <a href="https://arxiv.org/abs/cond-mat/0103176">Link</a>

[10]. A. Serquis, X.Y. Liao, Y.T. Zhu, J.Y. Coulter, J.Y. Huang, J.O. Willis, D.E. Peterson, F.M. Mueller, N.O. Moreno J.D. Thompson, S.S. Indrakanti and V.F. Nesterenko, The influence of microstructures and crystalline defects on the superconductivity of MgB2, <a href="https://scirate.com/arxiv/cond-mat/0201486">Link</a>

[11]. W. Greiner, L. Neise, H. Stöcker (1995). “Thermodynamics and statistical mechanics” Springer-Verlag.
p. 101.

[12]. A.A. Shiryaev, Int. J. Self-Propag. High-Temp. Synth. 4 (4) (1995) 351–362.

[13]. M.A. Hobosyan, S.A. Yolchinyana and K.S. Martirosyan, RSC Adv. 6 (2016) 66564-66570. <a href="http://doi.org/10.1039/C6RA12854H">Crossref</a>

[14]. C.B. Bean, Rev. Mod. Phys. 36 (1964) 31. <a href="http://doi.org/10.1103/RevModPhys.36.31">Crossref</a>

[15]. Yanwei Ma, H. Kumakura, A. Matsumoto, and K. Togano, Appl. Phys. Lett. 83 (2003) 1181. <a href="http://doi.org/10.1063/1.1600508">Crossref</a>

[16]. Yanwei Ma, Xianping Zhang, Aixia Xu, Xiaohang Li, Supercond. Sci. Technol. 19 (2006) 133.

[17]. A. Serquis, L. Civale, D.L. Hammon, X.Z. Liao, J.Y. Coulter, Appl. Phys. Lett. 82 (2002) 2847. <a href="http://doi.org/10.1063/1.1571231">Crossref</a>

[18]. D.F.K. Hennings, B. Schreinmacher, and H. Schreinmacher, J. Eur. Ceram. Soc. 13 (1994) 81‒88. <a href="http://doi.org/10.1016/0955-2219(94)90062-0">Crossref</a>

Downloads

Published

2017-06-30

How to Cite

Tolendiuly, S., Fomenko, S. M., Dannangoda, G. C., & Martirosyan, K. S. (2017). Self-Propagating High Temperature Synthesis of MgB2 Superconductor in High-Pressure of Argon Condition. Eurasian Chemico-Technological Journal, 19(2), 177–181. https://doi.org/10.18321/ectj649

Issue

Section

Articles