Boranes in Organic Chemistry 1. О±-Carbonylalkyl- and ОІ-Oxyalkylboranes in Organic Synthesis
DOI:
https://doi.org/10.18321/ectj522Abstract
This review is devoted to the synthesis of a-carbonylalkyl- and ОІ-hydroxy-alkyl boranes and their use in organic synthesis. a-Carbonyl-alkylboranes include several heteroatomic compounds, in particular, [1.2.3]-diazaborinines, uracyl boronic acids, and [1.2.3.4]-diaza-diboretes. The latter type has been obtained by the ketene aminoborations. The reactions of halogenboranes with diazoesters and sulfur ylides resulting in formation of a-carbonyl alkylborates containing diazofunction or ylide structural fragment are described. Amino and halogen boration of acetylenic acid esters was also used for the synthesis of a-carbonyl alkyl boranes. Reactions involving Cr-carbene complexes and acetylenic borone esters were presented for the synthesis of naphthoquinone boronic acids. The formation of amidoboranes by boration of dichloroacetanilides was remined. Boration of 4,8-dimethoxy-2-quinolone with trimethylborates leading to 2-quinolone-3-boronic acid was described. The common synthetic method to a-carbonyl alkyl boranes based on the hydroboration of acrylic acid derivatives was discussed. The results of enhydrazones hydroboration, leading to stable cyclic complexes have been mentioned. The interaction of a-bromoketones with trialkyl or dialkylboranes represents as a general synthetic method to a-carbonyl alkyl boranes. Synthetic approaches to Гў-hydroxy alkyl boranes are performed. The wide spread hydroboration of vinyl and allyl esters received a well-described attention. The hydroboration of cyclanone enol acetates, 3-keto- and 17-keto-steroids and cyclic allyl alcohol acetates was discussed. The results of aliphatic and alicyclic vinyl esters (including dihydrofuran derivatives) boralylation leading to ОІ-hydroxy alkyl boranes have been envisaged. The synthesis of optically active ОІ-hydroxy alkyl boranes using chiral borane hydrides was discussed. The heterocyclic boran dihydrides are obtained by the hydroboration of dihydropyranes, chromenes and flavenes. Borosilylation of allyl allenylic esters was also been envisaged. The synthetic scheme to optically active boranes and further optically active alcohols were presented. The problems of selectivity regularities in hydroboration reaction by intermolecular complex formations have been discussed.
References
2. V.M. Dembitsky and M. Srebnik, in M. Regitz and D. Kaufmann (eds), Science of Synthesis, Houben-Weyl Methods of Molecular Transformation, Georg Thieme Verlag, Stuttgart, Germany, Chap. 32, 2003, in press.
3. Wilkinson, J.S. Rev. Boron Chem. Acad. Press., New York, 1997, p.148.
4. Morin, C., Tetrahedron 50:12251 (1994).
5. B.M. Mikhailov and Y.N Bubnov. Organoboron Compounds in Organic Synthesis. Bell & Bain, Ltd., Glasgow, 1984.
6. Dembitsky, V.M., Smoum, R., Al-Quntar, A.A., Ali, H.A., Pergament I. and Srebnik, M., Current Topics in Phytochemistry, 2002, in press.
7. Gronowitz, S., and Maltesson, A., Acta Chem. Scand., Ser. B 29:1036 (1975).
8. Liao, T.K., Podrebarac, E.G., and Cheng, C.C., J. Amer. Chem. Soc. 86:1869 (1964).
9. Schinazi, R.F., and Prusoff, W.H., Tetrahedron Lett. 50:4981 (1978).
10. Paetzold, P., and Kosma, S., Chem. Ber. 112:654 (1979).
11. Paetzold, P., and Grundke, H., Synthesis 635 (1973).
12. Paetzold, P., and Biermann, H.P., Chem. Ber. 110:2678 (1977).
13. Schöellkopf, U.B., Banhidai, B, Frasnelli, H., Meyer, R., and Beckhaus, H., Justus Liebigs Ann. Chem. 1767 (1974).
14. Matteson, D.S., J. Amer. Chem. Soc. 82:4228 (1960).
15. Matteson, D.S., and Mah, R.W.H., J. Org. Chem. 28:2171 (1963).
16. Chandra, G., George, T.A., and Lappert, M.F., Chem. Commun. 116 (1967).
17. Binnewirtz, R.J., Klingenberger, H., Welte, R., and Paetzold, P., Chem. Ber. 116:1271 (1983).
18. Pawelke, G., and Burger, H., Appl. Organomet. Chem. 10:147 (1996).
19. Brauer, D.J., and Pawelke, G., J. Organomet. Chem., 604:43 (2000).
20. J.W. Lown (ed), Anthracycline and Anthracenedione-Based Anticancer Agents, in Bioactive Molecules, Elsevier, Oxford, 1988, vol. 6.
21. Davies, M.W., Johnson, C.N., and Harrity, J.P.A., Chem. Commun. 20:2107 (1999).
22. Maringgele, W., and Meller, A., Z. Anorg. Allg. Chem. 436:173 (1977).
23. Froborg, J., Magnusson, G., and Thoren, S., Tetrahedron Lett. 16:1621 (1975).
24. Sarker, S.D., Waterman, P.G., and Armstrong, J.A., J. Nat. Prod. 58:574 (1995).
25. Wu, T.S., Chang, F.C., and Wu, P.L., Phytochemistry 39:1453 (1995).
26. Tagawa, Y., Kawaoka, T., and Goto, Y., J. Heterocyc. Chem. 34:1677 (1997).
27. Denniel, V., Bauchat, P., Carboni, B., Danion, D., and Danion-Bougot, R., Tetrahedron Lett. 36:6875 (1995).
28. Brown, H.C., and Keblys, K.A., J. Amer. Chem. Soc. 86:1795 (1964).
29. Sucrow, W., Zuhlke, L., and Slopianka, M., Chem. Ber. 110:2818 (1977).
30. Brown, H.C., Rogic, M.M., and Rathke, M.W., J. Amer. Chem. Soc. 90:6218 (1968).
31. Mikhailov, B.M., and Shchegoleva, T.A., Izv. Acad. Nauk SSSR, Otd. Khim. Hauk 546 (1959).
32. Mikhailov, B.M., and Blochina, A.N., Izv. Acad. Nauk SSSR, Otd. Khim. Hauk 1373 (1962).
33. Mikhailov, B.M., and Safonova, E.N., Izv. Acad. Nauk SSSR, Ser. Khim. 1487 (1965).
34. Pasto, D.J., and Cumbo, C.C., J. Amer. Chem. Soc. 86:4343 (1964).
35. Pasto, D.J., and Snyder, R., J. Org. Chem. 31:2777 (1966).
36. Pasto, D.J. and Hickman, J., J. Amer. Chem. Soc. 90:4445 (1968).
37. Hassner, A., and Braun, B.H., Univ. Color. Studies, Ser. Chem. Pharm. 4:48 (1962).
38. Hassner, A., Barnett, R.E., Catsonlacos, P., and Wilen, S.H., J. Amer. Chem. Soc. 91:2632 (1969).
39. Lewis, J.W., and Pearce, A.A., Tetrahedron Lett. 5:2039 (1964).
40. Alvarez, A.A., and Arreguin, M., Chem. & Ind. 720 (1960).
41. H.C. Brown Boranes in Organic Chemistry. Cornell Univ. Press, Ithaca & London, 1972.
42. Hawthorne, M.F., J. Amer. Chem. Soc. 83:2541 (1961).
43. Uzarewicz, I., and Uzarewicz, A., Rocz. Chem. 44:1205 (1970).
44. Mikhailov, B.M., and Bubnov, Y.N., Tetrahedron Lett. 12:2127 (1971).
45. Mikhailov, B.M., and Bubnov, Y.N., Zh. Obshch. Khim. 41:2039 (1971).
46. Mikhailov, B.M., Organomet. Chem. Rev. A 8:1 (1972).
47. Brown, H.C., and Knights, E.F., J. Amer. Chem. Soc. 90:4439 (1968).
48. McGarvey, G.J., and Bajwa, J.S., Tetrahedron Lett. 26:6297 (1985).
49. Brown, H.C., and Chen, J.C., J. Org. Chem. 46:3978 (1981).
50. Brown, H.C., and Sharp, R.L., J. Am. Chem. Soc. 90:2915 (1968).
51. Klein, J., Levene, R., and Dunkelblum, E., Tetrahedron Lett. 13:2845 (1972).
52. Brown, H.C., Murali, D., and Singaram, B., J. Organomet. Chem. 581:116 (1999).
53. Wohl, R., Synthesis 38 (1974).
54. Ryu, I., Aya, T., Otani, S., Murai, S., and Senoda, N., J. Organomet. Chem. 321:279 (1987).
55. Dale, J.A., Dull, D.L., and Mosher, H.S, J. Org. Chem, 34:2543 (1969).
56. Coates, R.M., and Shaw, J.E., J. Org. Chem. 35:2601 (1970).
57. Coates, R.M., Rogers, B.D., Hobbs, S.J., and Peck, D.R., J. Amer. Chem. Soc. 109:1160 (1987).
58. Hoff, S., Brandsma, L., and Arens, J.F., Recl. Trav. Chim. Pays-Bas 88:609 (1969).
59. Pasto, D.J., and Timony, P.E., J. Organomet. Chem. 60:19 (1973).
60. Zweifel, G., and Plamondon, J., J. Org. Chem. 35:898 (1970).
61. Core, J., and Guigues, F., Bull. Soc. Chim. France 3521 (1970).
62. Still, W.C., and Goldsmith, D.J., J. Org. Chem. 35:2282 (1970).
63. Srivastava, R.M., and Brown, H.C., Can. J. Chem. 48:2334 (1970).
64. Kirkiacharian, B.S., and Garnier, M., Compt. Rend. 277:1037 (1973).
65. Clark-Lewis, J.W., and McGarry, F.J., Aust. J. Chem. 26:819 (1973).
66. Kirkiacharian, B.S., and Raulais, D., Compt. Rend. 269:464 (1969).
67. Anselmi, C., Catelani, G., and Monti, L., Gazz. Chim. Ital. 113:167 (1983).
68. Clark-Lewis, J.W., and McGarry, E.J., Aust. J. Chem. 26:809 (1973).
69. Onozawa, S., Hatanaka, Y., and Tanaka, M., Chem. Commun. 18:1863 (1999).
70. Chen, H., and Hartwig, J.F., Angew. Chem. Int. Ed. Engl. 38:3391 (1999).
71. Vasella, A., Wenger, W., and Rajamannar, T., Chem. Commun. 21:2215 (1999).
72. Wenger, W., and Vasella, A., Helv. Chim. Acta 83:1542 (2000).
73. Weber, M., Vasella, M., Textor, M., and Spencer, N.D., Helv. Chim. Acta 81:1359 (1998).
74. Brauer, D.J., and Pawelke, G., J. Organomet. Chem. 605:43 (2000).
75. Brown, H.C., and Vara Prasad, J.V.N., J. Amer. Chem. Soc. 108:2049 (1986).
76. Bryson, T.A., Akers, J.A., and Ergle, J.D., Synlett 499 (1991).
77. Panek, J.S., and Xu, F., J. Org. Chem. 57:5288 (1992).
78. House, H.O., and Melillo, D.G., J. Org. Chem. 38:1398 (1973).
79. Klein, J., and Dunkelblum, E., Tetrahedron Lett. 7:6047 (1966).
80. Klein, J., and Dunkelblum, E., Tetrahedron 24:5701 (1968).
81. Toromanoff, E., Topics in Stereochemistry 2:157 (1967).
82. Dunkelblum, E., Levene, R., and Klein, J., Tetrahedron 28:1009 (1972).
83. Zaidlewicz, M., and Uzarewicz, A., Rocz. Chem. 47:1433 (1973).
84. Zaidlewicz, M., and Uzarewicz, A., Rocz. Chem. 48:467 (1974).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.