Methodology of the Experiments to Study Lithium CPS Interaction with Deuterium Under Conditions of Reactor Irradiation

  • Yu. Ponkratov Institute of Atomic Energy, NNC RK, 10 Krasnoarmeyskaya str., Kurchatov, 071100, Kazakhstan
  • N. Nikitenkov Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050, Russia
  • I. Tazhibayeva Institute of Atomic Energy, NNC RK, 10 Krasnoarmeyskaya str., Kurchatov, 071100, Kazakhstan
  • Zh. Zaurbekova Institute of Atomic Energy, NNC RK, 10 Krasnoarmeyskaya str., Kurchatov, 071100, Kazakhstan
  • V. Gnyrya Institute of Atomic Energy, NNC RK, 10 Krasnoarmeyskaya str., Kurchatov, 071100, Kazakhstan
  • K. Samarkhanov Institute of Atomic Energy, NNC RK, 10 Krasnoarmeyskaya str., Kurchatov, 071100, Kazakhstan
  • I. Lyublinski JSC “Red Star”, 38 Khoroshevskoe road, Moscow, 123007 Russia
  • G. Mazzitelli ENEA, 45 Via Enrico Ferni, Frascati, 00044, Italy
Keywords: lithium, capillary-porous system, deuterium, reactor irradiation, ampoule device

Abstract

Problems of plasma-facing materials degradation and in-vessel element destructions, tritium accumulation and plasma pollution can be overcome by the use of liquid metals with low atomic number. The best candidate as a material for divertor receiving plates and other in-vessel devices is lithium. One of the problems associated with the use of such lithium systems in the fusion reactors is to determine the parameters of the working gases interaction with plasma facing surfaces under conditions simulating real operation, i.e. under conditions of neutron and gamma radiation. This paper describes a technique of the reactor experiments to study lithium capillary-porous systems (CPS) interaction with deuterium under neutron irradiation. The neutron-physical and thermophysical calculations were the basis for the design development and further manufacture of a unique irradiation ampoule device with a lithium CPS sample. Several experiments were performed to calibrate the deuterium fluxes through experimental cell with lithium CPS; and preliminary results of these experiments were obtained.

References

(1). G. Mazzitelli, M.L. Apicella, D. Frigione, G. Maddaluno, M. Marinucci, C. Mazzotta, V. Pericoli Ridolfini, M. Romanelli, G. Szepesi, O. Tudisco, Nucl. Fusion 51 (2011). Crossref

(2). H.W. Kugel, J.P. Allain, M.G. Bell, A. Diallo, R. Ellis, S.P. Gerhardt, B. Heim, M.A. Jaworski, R. Kaita, J. Kallman, S. Kaye, B.P. LeBlanc, R. Maingi, A. McLean, J. Menard, D. Mueller, R. Nygren, M. Ono, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlake, M. Viola, L. Zakharov, Fusion Eng. Des. 87 (2012) 1724–1731. Crossref

(3). S.V. Mirnov, A.M. Belov, N.T. Djigailo, A.N. Kostina, V.B. Lazarev, I.E. Lyublinski, V.M. Nesterenko, A.V. Vertkov, J. Nucl. Mater. 438 (2013) S224–S228. Crossref

(4). M.Yu. Zharkov, A.V. Vertkov, I.E. Lyublinski, S.V. Mirnov, V.B. Lazarev, A.N. Szherbak, Physics Procedia 71 (2015) 47–51. Crossref

(5). S.V. Mirnov, A.M. Belov, N.T. Djigailo, A.S. Dzhurik, S.I. Kravchuk, V.B. Lazarev, I.E. Lyublinski, A.V. Vertkov, M.Yu. Zharkov, A.N. Shcherbak, Nucl. Fusion 55 (2015) 123015. Crossref

(6). G. Mazzitelli, M.L. Apicella, G. Apruzzese, F. Crescenzi, F. Iannone, G. Maddaluno, V. Pericoli-Ridolfini, S. Roccella, M. Reale, B. Viola, I. Lyublinski, A. Vertkov, J. Nucl. Mater. 463 (2015) 1152–1155. Crossref

(7). F. Scotti, V.A. Soukhanovskii, J.-W. Ahn, R.E. Bell, S.P. Gerhardt, M.A. Jaworski, R. Kaita, H.W. Kugel, A.G. McLean, E.T. Meier, M. Podestà, A.L. Roquemore, J. Nucl. Mater. 463 (2015) 1165–1168. Crossref

(8). Z. Chen, Y. Song, Q. Yang, J. Hu, G. Zuo, J. Ren, S. Zhang, H. Xu, Y. Wang, W. Zhao, Fusion Eng. Des. 89 (2014) 2685–2690. Crossref

(9). I.E. Lyublinski, A.V. Vertkov, M.Yu. Zharkov, V.A. Vershkov, S.V. Mirnov, IOP Conf. Series: Materials Science and Engineering 130 (2016) 012019. Crossref

(10). F.L. Tabarés, E. Oyarzabal, D. Tafalla, A.B. Martin-Rojo, D. Alegre, A. de Castro, J. Nucl. Mater. 463 (2015) 1142–1146. Crossref

(11). I.E. Lyublinski, A.V. Vertkov, M.Yu. Zharkov, V.V. Semenov, S.V. Mirnov, V.B. Lazarev, I.L. Tazhibayeva, G.V. Shapovalov, T.V. Kulsartov, A.V. D’yachenko, G. Mazzitelli, P. Agostini, Fusion Eng. Des. 88 (2013) 1862–1865. Crossref

(12). I. Lyublinski, A. Vertkov, V. Lazarev, J. Nucl. Mater. 463 (2015) 1156–1159. Crossref

(13). I. Tazhibayeva, Yu. Ponkratov, T. Kulsartov, Yu. Gordienko, M. Skakov, Zh. Zaurbekova, I. Lyublinski, A. Vertkov, G. Mazzitelli, Fusion Eng. Des. 117 (2017) 194–198. Crossref

(14). T. Kulsartov, I. Tazhibayeva, Yu. Ponkratov, Yu. Gordienko, Zh. Zaurbekova, V. Baklanov, Ye. Chikhray, M. Skakov, Ye. Koyanbayev, A. Korovikov, E. Nesterov, Fusion Eng. Des. 124 (2017) 324–327. Crossref

(15). Yu. Ponkratov, V. Baklanov, M. Skakov, T. Kulsartov, I. Tazhibayeva, Yu. Gordienko, Zh. Zaurbekova, Ye. Tulubayev, I. Lyublinski, A. Vertkov, Fusion Eng. Des. 109–111 (2016) 52– 56. Crossref

(16). A.O. Sadvakassova, I. Tazhibayeva, E. Kenzhin, Zh. Zaurbekova, T. Kulsartov, Yu. Gordienko, Ye. Chikhray, Fusion Sci. Technol. 60 (2011) 9–15. Crossref

Published
2019-06-30
How to Cite
[1]
Y. Ponkratov, “Methodology of the Experiments to Study Lithium CPS Interaction with Deuterium Under Conditions of Reactor Irradiation”, Eurasian Chem. Tech. J., vol. 21, no. 2, pp. 107-113, Jun. 2019.
Section
Articles