Oxidation Characteristics of Water Soluble Fractions of Agro-Stalks with Focus on Function of Reactive Inorganics
DOI:
https://doi.org/10.18321/ectj1101Keywords:
water soluble fractions, oxidation characteristics, reactive inorganicsAbstract
In order to deepen the understanding of the thermochemical behavior of reactive inorganics, which play an important role in slagging and fouling during combustion of agro-stalks, the oxidation behavior of the water-soluble fraction of corn stover, wheat straw and rice straw was examined using a simultaneous thermogravimetric analyzer. The oxidation characteristics were discussed in combination with elemental analysis of water-soluble fractions. Results showed that reactive inorganics elements account for 30–40% in water-soluble fractions of the three agro-stalks and carbon was oxidized at two separate stages. Four stages were found during oxidation of water-soluble fractions – (1) devolatilisation of organics (100‒400 °C); (2) oxidation of char (400–650 °C); (3) oxidation of char with melting of salts or decomposition of carbonate (650–800 °C); (4) vaporization of KCl (800–1000 °C). This work provides a base study for an optimized design of combustion for agro-stalks and pharmaceutical waste.
References
(1). Williams, J.M. Jones, L. Ma, M. Pourkashanian, Prog. Energy Combust. Sci. 38 (2012) 113‒137. Crossref DOI: https://doi.org/10.1016/j.pecs.2011.10.001
(2). S.V. Vassilev, C.G. Vassileva, Energy Fuels 33 (2019) 2763‒2777. Crossref DOI: https://doi.org/10.1021/acs.energyfuels.9b00081
(3). Y. Niu, H. Tan, S. Hui, Prog. Energy Combust. Sci. 52 (2016) 1‒61. Crossref DOI: https://doi.org/10.1016/j.pecs.2015.09.003
(4). Y.-J. Lee, J.-W. Choi, J.-H. Park, H. Namkung, G.-S. Song, S.-J. Park, D.-W. Lee, J.-G. Kim, C.-H. Jeon, Y.-C. Choi, ACS Sustainable Chem. Eng. 6 (2018) 13056‒13065. Crossref DOI: https://doi.org/10.1021/acssuschemeng.8b02588
(5). L. Deng, T. Zhang, D. Che, Fuel Process. Technol. 106 (2013) 712‒720. Crossref DOI: https://doi.org/10.1016/j.fuproc.2012.10.006
(6). Z. Zhang, F. He, Y. Zhang, R. Yu, Y. Li, Z. Zheng, Z. Gao, J. Clean. Prod. 170 (2018) 379‒387. Crossref DOI: https://doi.org/10.1016/j.jclepro.2017.09.150
(7). Babin, C. Vaneeckhaute, M.C. Iliuta, Biomass Bioenerg. 146 (2021) 105968. Crossref DOI: https://doi.org/10.1016/j.biombioe.2021.105968
(8). Q.H. Li, Y.G. Zhang, A.H. Meng, L. Li, G.X. Li, Fuel Process. Technol. 107 (2013) 107‒112. Crossref DOI: https://doi.org/10.1016/j.fuproc.2012.08.012
(9). Rebbling, I.-L. Näzelius, M. Schwabl, S. Feldmeier, C. Schön, J. Dahl, W. Haslinger, D. Boström, M. Öhman, C. Boman, Biomass Bioenerg. 137 (2020) 105968. Crossref DOI: https://doi.org/10.1016/j.biombioe.2020.105557
(10). Q. Liu, S.C. Chmely, N. Abdoulmoumine, Energ. Fuel. 31 (2017) 3525‒3536. Crossref DOI: https://doi.org/10.1021/acs.energyfuels.7b00258
(11). M. Zevenhoven, P. Yrjas, B.-J. Skrifvars, M. Hupa, Energ. Fuel. 26 (2012) 6366‒6386. Crossref DOI: https://doi.org/10.1021/ef300621j
(12). Yin, L.A. Rosendahl, S.K. Kær, Prog. Energy Combust. Sci. 34 (2008) 725‒754. Crossref DOI: https://doi.org/10.1016/j.pecs.2008.05.002
(13). O. Sippula, H. Lamberg, J. Leskinen, J. Tissari, J. Jokiniemi, Fuel 202 (2017) 144‒153. Crossref DOI: https://doi.org/10.1016/j.fuel.2017.04.009
(14). Y. Zhang, F. He, Z. Gao, Y. You, P. Sun, Fuel 162 (2015) 251‒257. Crossref DOI: https://doi.org/10.1016/j.fuel.2015.09.025
(15). P. Brassard, J.H. Palacios, S. Godbout, D. Bussières, R. Lagacé, J.-P. Larouche, F. Pelletier, Bioresour. Technol. 155 (2014) 300‒306. Crossref DOI: https://doi.org/10.1016/j.biortech.2013.12.027
(16). N. Said, T. Bishara, A. Garcia-Maraver, M. Zamorano, Waste Manage. 33 (2013) 2250‒2256. Crossref DOI: https://doi.org/10.1016/j.wasman.2013.07.019
(17). P. Thy, C. Yu, B.M. Jenkins, C.E. Lesher, Energ. Fuel. 27 (2013) 3969‒3987. Crossref DOI: https://doi.org/10.1021/ef400660u
(18). Saddawi, J.M. Jones, A. Williams, C. Le Coeur, Energ. Fuel. 26 (2012) 6466‒6474. Crossref DOI: https://doi.org/10.1021/ef2016649
(19). Vamvuka, D. Zografos, G. Alevizos, Bioresour. Technol. 99 (2008) 3534‒3544. Crossref DOI: https://doi.org/10.1016/j.biortech.2007.07.049
(20). H. Namkung, Y.-J. Lee, J.-H. Park, G.-S. Song, J.W. Choi, J.-G. Kim, S.-J. Park, J.C. Park, H.- T. Kim, Y.-C. Choi, Energy 187 (2019) 115950. Crossref DOI: https://doi.org/10.1016/j.energy.2019.115950
(21). Mlonka-Mędrala, A. Magdziarz, M. Gajek, K. Nowińska, W. Nowak, Fuel 261 (2020) 116421. Crossref DOI: https://doi.org/10.1016/j.fuel.2019.116421
(22). D.S. Chandler, F.L.P. Resende, Biomass Bioenerg. 113 (2018) 65‒74. Crossref DOI: https://doi.org/10.1016/j.biombioe.2018.03.008
(23). P. Abelha, C. Mourão Vilela, P. Nanou, M. Carbo, A. Janssen, S. Leiser, Fuel 253 (2019) 1018‒1033. Crossref DOI: https://doi.org/10.1016/j.fuel.2019.05.050
(24). M.A. Carrillo, S.A. Staggenborg, J.A. Pineda, Fuel 116 (2014) 427‒431. Crossref DOI: https://doi.org/10.1016/j.fuel.2013.08.028
(25). Y. Niu, Y. Lv, X. Zhang, D. Wang, P. Li, S. Hui, Appl. Therm. Eng. 154 (2019) 485‒492. Crossref DOI: https://doi.org/10.1016/j.applthermaleng.2019.03.124
(26). S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan, Fuel 94 (2012) 1‒33. Crossref DOI: https://doi.org/10.1016/j.fuel.2011.09.030
(27). Z. He, J. Mao, C.W. Honeycutt, T. Ohno, J.F. Hunt, B.J. Cade-Menun, Biol. Fertil. Soils 45 (2009) 609‒616. Crossref DOI: https://doi.org/10.1007/s00374-009-0369-8
(28). P.C. Hsu, K.G. Foster, T.D. Ford, P.H. Wallman, B.E. Watkins, C.O. Pruneda, M.G. Adamson, Waste Manage. 20 (2000) 363‒368. Crossref DOI: https://doi.org/10.1016/S0956-053X(99)00338-4
(29). Lin, Y. Chi, Y. Jin, H. Song, Procedia Environ. Sci. 31 (2016) 335‒344. Crossref DOI: https://doi.org/10.1016/j.proenv.2016.02.045
(30). Z. Yao, J. Li, X. Zhao, Chemosphere 84 (2011) 1167‒1174. Crossref DOI: https://doi.org/10.1016/j.chemosphere.2011.05.061
(31). S. Arvelakis, P.A. Jensen, K. Dam-Johansen, Energ. Fuel. 18 (2004) 1066‒1076. Crossref DOI: https://doi.org/10.1021/ef034065+
(32). X. Li, F. He, X. Su, F. Behrendt, Z. Gao, H. Wang, Fuel 257 (2019) 116021. Crossref DOI: https://doi.org/10.1016/j.fuel.2019.116021
(33). S. Du, H. Yang, K. Qian, X. Wang, H. Chen, Fuel 117 (2014) 1281‒1287. Crossref DOI: https://doi.org/10.1016/j.fuel.2013.07.085
(34). X. Li, F. He, F. Behrendt, Z. Gao, J. Shi, C. Li, Fuel 289 (2021) 119754. Crossref DOI: https://doi.org/10.1016/j.fuel.2020.119754
(35). He, X. Li, F. Behrendt, T. Schliermann, J. Shi, Y. Liu, Fuel Process. Technol. 198 (2020) 106231. Crossref DOI: https://doi.org/10.1016/j.fuproc.2019.106231
(36). S. Deng, X. Wang, J. Zhang, Z. Liu, H. Mikulčić, M. Vujanović, H. Tan, N. Duić, J. Environ. Manage. 218 (2018) 50‒58. Crossref DOI: https://doi.org/10.1016/j.jenvman.2018.04.057
(37). Saddawi, J.M. Jones, A. Williams, Fuel Process. Technol. 104 (2012) 189‒197. Crossref DOI: https://doi.org/10.1016/j.fuproc.2012.05.014
(38). He, W. Yi, X. Bai, Energy Convers. Manage. 47 (2006) 2461‒2469. Crossref DOI: https://doi.org/10.1016/j.enconman.2005.11.011
(39). M.S. Reza, S.N. Islam, S. Afroze, M.S.A. Bakar, J. Taweekun, A.K. Azad, Data in Brief 30 (2020) 105536. Crossref DOI: https://doi.org/10.1016/j.dib.2020.105536
(40). Sher, S.Z. Iqbal, H. Liu, M. Imran, C.E. Snape, Energy Convers. Manage. 203 (2020) 112266. Crossref DOI: https://doi.org/10.1016/j.enconman.2019.112266
(41). J.M. Jones, L.I. Darvell, T.G. Bridgeman, M. Pourkashanian, A. Williams, Proc. Combust. Inst. 31 (2007) 1955‒1963. Crossref DOI: https://doi.org/10.1016/j.proci.2006.07.093
(42). M. Xu, C. Sheng, Energ. Fuel. 26 (2011) 209‒218. Crossref DOI: https://doi.org/10.1021/ef2011657
(43). X. Tian, Y. Wang, Z. Zeng, L. Dai, Y. Peng, L. Jiang, X. Yang, L. Yue, Y. Liu, R. Ruan, Bioresour Technol. 320 (2021) 124415. Crossref DOI: https://doi.org/10.1016/j.biortech.2020.124415
(44). S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, Fuel 105 (2013) 40‒76. Crossref DOI: https://doi.org/10.1016/j.fuel.2012.09.041
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.