Numerical and Experimental Investigation of Laminar One-Dimensional Counter-Flow Flames Using Product Gas From Pyrolysis and Gasification of Woody Biomass
DOI:
https://doi.org/10.18321/ectj758Abstract
Further advances in the utilization of biomass-based gaseous fuels in combustion systems require a deeper understanding of the combustion chemistry behind, as well as of the coupling of the chemistry with physical phenomena such as turbulence. The former is investigated in the present study combining both experiments with numerical simulations of different types of laminar non-premixed flames (sooting and non-sooting) in a counter-flow setup. The focus is put on synthetic gas mixtures, resembling, to different extents, typical compositions of the product gas obtained in biomass gasification consisting of CH4 (reference) and CH4 mixed with CO2, N2, O2, and/or H2, always. The oxidizer in all cases is air. A wide range of air-fuel ratios is considered. The influence of the product gas composition on the flame behaviour and flame structure with respect to the changes of the species profiles and peak temperatures with changing flow velocities is discussed. Laser-based spectroscopy techniques, in particular laser-induced Rayleigh scattering and laser-induced fluorescence (LIF), are applied as diagnostic tools. The former can provide an accurate understanding of temperature distributions, while the latter helps to identify the flame front through the tracking of intermediate species, such as CH2O (formaldehyde). Additionally, CH* chemiluminescence contributes to localize the flame front. Lastly, the influence of the N2-shroud flow velocities and diameters, as well as resulting buoyancy effects due to a raise in temperature, are taken into account. In correspondence to these experiments, the flames are numerically simulated by an in-house time-dependent implicit Fortran code.
References
(1). M. Dudynski, K. Kwiatkowski, K. Bajer, Waste Manage. 32 (2012) 685–691. Crossref
(2). N. Cerone, F. Zimbardi, L. Contuzzi, E. Alvino, M. Carnevale, V. Valerio, Fuels 28 (2014) 3948–3956. Crossref
(3). K. Kwiatkowski, E. Mastorakos, Energy Fuels 30 (6) (2016) 4386–4397 Crossref
(4). A.B. Sahu, R.V. Ravikrishna, Combust. Flame 173 (2016) 208–228. Crossref
(5). H. Xu, F. Liu, S. Sun, Y. Zhao, S. Meng, W. Tang, Combust. Flame 177 (2017) 67–78. Crossref
(6). D.E. Giles, S. Som, S.K. Aggarwal, Fuel 85 (2006) 1729–1742. Crossref
(7). C.A. Hoerlle, L. Zimmer, F.M. Pereira, Fuel 203 (2017) 671–685. Crossref
(8). R.V. Ravikrishna, A.B. Sahu, Int. J. Spray Combust. 10 (2017) 38–71. Crossref
(9). G. Dixon-Lewis, T. David, P.H. Gaskell, S. Fukutani, H. Jinno, J.A. Miller, R.J. Kee, M.D. Smooke, N. Peters, E. Effelsberg, J. Warnatz, F. Behrendt, P. Combust. Inst. 20 (1) (1985) 1893– 1904. Crossref
(10). R.J. Kee, J.A. Miller, J. Warnatz, A Fortran computer code package for the evaluation of gas phase viscosities, conductivities and diffusion coefficients. Sandia National Laboratories Report SAND83-8209 (1983).
(11). G. Sutton, A. Levick, G. Edwards, D. Greenhalgh, Combust. Flame 147 (2006) 39–48 (2006). Crossref
(12). S. Bejaoui, X. Mercier, P. Descroux, E. Therssen, Combust. Flame 161 (2014) 2479–2491. Crossref
(13). A. Burkert, W. Paa, M. Reimert, K. Klinkov, C. Eigenbrod, Fuel 111 (2013) 384–392. Crossref
(14). P. Nau, J. Krüger, A. Lackner, M. Letzgus, A. Brockhinke, Appl. Phys. B 107 (3) (2012) 551– 559. Crossref
(15). S. Turns, An Introduction to Combustion: Concepts and Applications. McGraw-Hill (2012).
(16). B.C. Connelly, B.A.V. Bennett, M.D. Smooke, M.B. Long, P. Combust. Inst. 32 (2009) 879– 886. Crossref
(17). F. Liu, A.E. Karatas, Ö.L. Gülder, M. Gu, Combust. Flame 162 (2015) 2231–2247. Crossref
(18). D. Giassi, S. Cao, B.A.V. Bennett, D.P. Stocker, F. Takahashi, M.D. Smooke, M.B. Long, Combust. Flame 167 (2016) 198–206. Crossref
(19). T. Garcia-Armingol, J. Ballester, Int. J. Hydrogen Energ. 39 (2014) 20255–20265. Crossref
(20). M. De Leo, A. Saveliev, L.A. Kennedy, S.A. Zelepouga, Combust. Flame 149 (2007) 435– 447. Crossref
(21). G.P. Smith, C. Park, L.A. Kennedy, J. Luque, Combust. Flame 140 (2005) 385–389. Crossref
(22). C.B. Oh, E. Ju Lee, J. Park, Int. J. Spray Combust. 2 (3) (2010) 199–218. Crossref
(23). L. Figura, A. Gomez, Combust. Flame 159 (2012) 142–150. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.