Non-Catalytic Gas Phase Oxidation of Hydrocarbons
DOI:
https://doi.org/10.18321/ectj1144Keywords:
natural gas, associated petroleum gas, syngas, matrix conversion, gas chemistry, petrochemistryAbstract
The predicted role of gas chemistry in meeting the global needs for fuels and petrochemicals makes it necessary to increase the efficiency of gas chemical processes and reduce their energy consumption. An important role in solving these problems can be played by non-catalytic autothermal oxidation processes that provide high energy efficiency with minimal demands on the composition of processed gases and their preliminary preparation. The paper presents the latest results of the development of two promising directions in natural gas processing. One, so called matrix conversion, belongs to the group of processes based on their preliminary conversion into syngas and demonstrates the possibility of a significant increase in specific capacity due to the transition to autothermal oxidative conversion. The other is based on the processes of direct conversion of hydrocarbon gases into chemical products – their partial oxidation and oxycracking with subsequent catalytic carbonylation of the resulting methanol and ethylene. In this case, additional advantages are achieved due to the possibility of direct processing of complex gas mixtures without their preliminary separation.
References
(1). K. Aasberg-Petersen, J.-H. Bak Hansen, T.S. Christensen, I. Dybkjaer, P. Seier Christensen, C. Stub Nielsen, S.E.L. Winter Madsen, J.R. Rostrup- Nielsen, Appl. Catal. A 221 (2001) 379–387. Crossref
(2). S.A. Al-Sayari, Open Catal. J. 6 (2013) 17–28. Crossref
(3). I. Dybkjar, K. Aasberg-Petersen, Can. J. Chem. Eng. 94 (2016) 607–612. Crossref
(4). V. Arutyunov, Rev. Chem. Eng. 37 (2021) 99–123. Crossref
(5). Escravos GTL Web-Page (accessed 15 March 2022).
(6). S.O. Dorofeenko, E.V. Polianczyk, Chem. Eng. J. 292 (2016) 183–189. Crossref
(7). T.Y. Amiri, K. Ghasemzageh, A. Iulianelli, Chem. Eng. Process 157 (2020) 108148. Crossref
(8). M. Fierro, P. Requena, E. Salgansky, M. Toledo, Chem. Eng. J. 425 (2021) 130178. Crossref
(9). A. Nikitin, A. Ozersky, V. Savchenko, I. Sedov, V. Shmelev, V. Arutyunov, Chem. Eng. J. 377 (2019) 120883. Crossref
(10). V.S. Arutyunov, V.I. Savchenko, I.V. Sedov, I.G. Fokin, A.V. Nikitin, L.N. Strekova, Chem. Eng. J. 282 (2015) 206–212. Crossref
(11). V.S. Arutyunov, L.N. Strekova, V.I. Savchenko, I.V. Sedov, A.V. Nikitin, O.L. Eliseev, M.V. Kryuchkov, A.L. Lapidus, Pet. Chem. 59 (2019) 370–379. Crossref
(12). A. Jess, R. Popp, K. Hedden, Appl. Catal. A: Gen. 186 (1999) 321–342. Crossref
(13). A. Lapidus, O. Eleseev, M. Kruchkov, Hydrocarbons production from synthesis gas, ballasted with nitrogen. Oil and gas processing [Pererabotka nefti i gaza] 5 (2011) 9–11 (in Russian).
(14). V. Arutyunov, A. Nikitin, L. Strekova, V. Savchenko, I. Sedov, Catal. Today 379 (2021) 23–27. Crossref
(15). V.I. Savchenko, A.V. Nikitin, I.V. Sedov, A.V. Ozerskii, V.S. Arutyunov, Chem. Eng. Sci. 207 (2019) 744–751. Crossref
(16). V.I. Savchenko, A.V. Nikitin, Ya.S. Zimin, A.V. Ozerskii, I.V. Sedov, V.S. Arutyunov, Chem. Eng. Res. Des. 175 (2021) 250–258. Crossref
(17). V.I. Savchenko, Ya.S. Zimin, A.V. Nikitin, I.V. Sedov, V.S. Arutyunov, J. CO2 Util. 47 (2021) 101490. Crossref
(18). M.Yu. Sinev, Z.T. Fattakhova, V.I. Lomonosov, Yu.A. Gordienko, J. Nat. Gas Chem. 18 (2009) 273–287. Crossref
(19). A. Galadima, O. Muraza. J. Ind. Eng. Chem. 37 (2016) 1–13. Crossref
(20). K.R. Hall, Catal. Today 106 (2005) 243–246. Crossref
(21). A. Breed, M.F. Doherty, S. Gadewar, P. Grosso, I.M. Lorkovic, E.W. McFarland, M.J. Weiss, Catal. Today 106 (2005) 301–304. Crossref
(22). Qi Zhang, Y. Liu, T. Chen, X. Yu, J. Wang, T. Wang, Chem. Eng. Sci. 142 (2016) 126–136. Crossref
(23). X. Chen, D. Chen, Li-H. Gan, Chem. Phys. Lett. 771 (2021) 138559. Crossref
(24). V. Arutyunov, Direct Methane to Methanol: Foundations and Prospects of the Process. 2014. Elsevier B.V., Amsterdam, The Netherlands. Crossref
(25). V.S. Arutyunov, R.N. Magomedov, A.Yu. Proshina, L.N. Strekova, Chem. Eng. J. 238 (2014) 9–16. Crossref
(26). V.S. Arutyunov, V.I. Savchenko, I.V. Sedov, A.V. Nikitin, R.N. Magomedov, A.Yu. Proshina, Russ. Chem. Rev. 86 (2017) 47–74. Crossref
(27). K.D. Wiese, D. Obst, Hydroformylation. In: Beller M. (eds) Catalytic Carbonylation Reactions. Topics in Organometallic Chemistry, 2006. vol 18. Springer, Berlin, Heidelberg. Crossref
(28). D.N. Gorbunov, M.V. Nenasheva, R.P. Matsukevich, M.V. Terenina, F.N. Putilin, Yu.S. Kardasheva, A.L. Maksimov, E.A. Karakhanov, Pet. Chem. 59 (2019) 1009–1016. Crossref
(29). E.M. Martsinkevich, L.G. Bruk, L.V. Dashko, A.A. Afaunov, V.R. Flid, I.V. Sedov, Pet. Chem. 58 (2018) 1032–1035. Crossref
(30). A. Mac Farlan, D. Liu, Studies in Surface Science and Catalysis 136 (2001) 411–416. Crossref
(31). J. Vondran, M.R.L. Furst, G.R. Eastham, T. Seidensticker, D.J. Cole-Hamilton, Chem. Rev. 121 (2021) 6610–6653. Crossref
(32). V. Arutyunov, N. Poghosyan, M. Poghosyan, L. Tavadyan, O. Shapovalova, L. Strekova, Chem. Eng. J. 329 (2017) 231–237. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.