Non-Catalytic Gas Phase Oxidation of Hydrocarbons
DOI:
https://doi.org/10.18321/ectj1144Keywords:
natural gas, associated petroleum gas, syngas, matrix conversion, gas chemistry, petrochemistryAbstract
The predicted role of gas chemistry in meeting the global needs for fuels and petrochemicals makes it necessary to increase the efficiency of gas chemical processes and reduce their energy consumption. An important role in solving these problems can be played by non-catalytic autothermal oxidation processes that provide high energy efficiency with minimal demands on the composition of processed gases and their preliminary preparation. The paper presents the latest results of the development of two promising directions in natural gas processing. One, so called matrix conversion, belongs to the group of processes based on their preliminary conversion into syngas and demonstrates the possibility of a significant increase in specific capacity due to the transition to autothermal oxidative conversion. The other is based on the processes of direct conversion of hydrocarbon gases into chemical products – their partial oxidation and oxycracking with subsequent catalytic carbonylation of the resulting methanol and ethylene. In this case, additional advantages are achieved due to the possibility of direct processing of complex gas mixtures without their preliminary separation.
References
(1). K. Aasberg-Petersen, J.-H. Bak Hansen, T.S. Christensen, I. Dybkjaer, P. Seier Christensen, C. Stub Nielsen, S.E.L. Winter Madsen, J.R. Rostrup- Nielsen, Appl. Catal. A 221 (2001) 379–387. Crossref DOI: https://doi.org/10.1016/S0926-860X(01)00811-0
(2). S.A. Al-Sayari, Open Catal. J. 6 (2013) 17–28. Crossref DOI: https://doi.org/10.2174/1876214X20130729001
(3). I. Dybkjar, K. Aasberg-Petersen, Can. J. Chem. Eng. 94 (2016) 607–612. Crossref DOI: https://doi.org/10.1002/cjce.22453
(4). V. Arutyunov, Rev. Chem. Eng. 37 (2021) 99–123. Crossref DOI: https://doi.org/10.1515/revce-2018-0057
(5). Escravos GTL Web-Page (accessed 15 March 2022).
(6). S.O. Dorofeenko, E.V. Polianczyk, Chem. Eng. J. 292 (2016) 183–189. Crossref DOI: https://doi.org/10.1016/j.cej.2016.02.013
(7). T.Y. Amiri, K. Ghasemzageh, A. Iulianelli, Chem. Eng. Process 157 (2020) 108148. Crossref DOI: https://doi.org/10.1016/j.cep.2020.108148
(8). M. Fierro, P. Requena, E. Salgansky, M. Toledo, Chem. Eng. J. 425 (2021) 130178. Crossref DOI: https://doi.org/10.1016/j.cej.2021.130178
(9). A. Nikitin, A. Ozersky, V. Savchenko, I. Sedov, V. Shmelev, V. Arutyunov, Chem. Eng. J. 377 (2019) 120883. Crossref DOI: https://doi.org/10.1016/j.cej.2019.01.162
(10). V.S. Arutyunov, V.I. Savchenko, I.V. Sedov, I.G. Fokin, A.V. Nikitin, L.N. Strekova, Chem. Eng. J. 282 (2015) 206–212. Crossref DOI: https://doi.org/10.1016/j.cej.2015.02.082
(11). V.S. Arutyunov, L.N. Strekova, V.I. Savchenko, I.V. Sedov, A.V. Nikitin, O.L. Eliseev, M.V. Kryuchkov, A.L. Lapidus, Pet. Chem. 59 (2019) 370–379. Crossref DOI: https://doi.org/10.1134/S0965544119040029
(12). A. Jess, R. Popp, K. Hedden, Appl. Catal. A: Gen. 186 (1999) 321–342. Crossref DOI: https://doi.org/10.1016/S0926-860X(99)00152-0
(13). A. Lapidus, O. Eleseev, M. Kruchkov, Hydrocarbons production from synthesis gas, ballasted with nitrogen. Oil and gas processing [Pererabotka nefti i gaza] 5 (2011) 9–11 (in Russian).
(14). V. Arutyunov, A. Nikitin, L. Strekova, V. Savchenko, I. Sedov, Catal. Today 379 (2021) 23–27. Crossref DOI: https://doi.org/10.1016/j.cattod.2020.06.057
(15). V.I. Savchenko, A.V. Nikitin, I.V. Sedov, A.V. Ozerskii, V.S. Arutyunov, Chem. Eng. Sci. 207 (2019) 744–751. Crossref DOI: https://doi.org/10.1016/j.ces.2019.07.012
(16). V.I. Savchenko, A.V. Nikitin, Ya.S. Zimin, A.V. Ozerskii, I.V. Sedov, V.S. Arutyunov, Chem. Eng. Res. Des. 175 (2021) 250–258. Crossref DOI: https://doi.org/10.1016/j.cherd.2021.09.009
(17). V.I. Savchenko, Ya.S. Zimin, A.V. Nikitin, I.V. Sedov, V.S. Arutyunov, J. CO2 Util. 47 (2021) 101490. Crossref DOI: https://doi.org/10.1016/j.jcou.2021.101490
(18). M.Yu. Sinev, Z.T. Fattakhova, V.I. Lomonosov, Yu.A. Gordienko, J. Nat. Gas Chem. 18 (2009) 273–287. Crossref DOI: https://doi.org/10.1016/S1003-9953(08)60128-0
(19). A. Galadima, O. Muraza. J. Ind. Eng. Chem. 37 (2016) 1–13. Crossref DOI: https://doi.org/10.1016/j.jiec.2016.03.027
(20). K.R. Hall, Catal. Today 106 (2005) 243–246. Crossref DOI: https://doi.org/10.1016/j.cattod.2005.07.176
(21). A. Breed, M.F. Doherty, S. Gadewar, P. Grosso, I.M. Lorkovic, E.W. McFarland, M.J. Weiss, Catal. Today 106 (2005) 301–304. Crossref DOI: https://doi.org/10.1016/j.cattod.2005.08.001
(22). Qi Zhang, Y. Liu, T. Chen, X. Yu, J. Wang, T. Wang, Chem. Eng. Sci. 142 (2016) 126–136. Crossref DOI: https://doi.org/10.1016/j.ces.2015.11.010
(23). X. Chen, D. Chen, Li-H. Gan, Chem. Phys. Lett. 771 (2021) 138559. Crossref DOI: https://doi.org/10.1016/j.cplett.2021.138559
(24). V. Arutyunov, Direct Methane to Methanol: Foundations and Prospects of the Process. 2014. Elsevier B.V., Amsterdam, The Netherlands. Crossref DOI: https://doi.org/10.1016/B978-0-444-63253-1.02001-8
(25). V.S. Arutyunov, R.N. Magomedov, A.Yu. Proshina, L.N. Strekova, Chem. Eng. J. 238 (2014) 9–16. Crossref DOI: https://doi.org/10.1016/j.cej.2013.10.009
(26). V.S. Arutyunov, V.I. Savchenko, I.V. Sedov, A.V. Nikitin, R.N. Magomedov, A.Yu. Proshina, Russ. Chem. Rev. 86 (2017) 47–74. Crossref DOI: https://doi.org/10.1070/RCR4648
(27). K.D. Wiese, D. Obst, Hydroformylation. In: Beller M. (eds) Catalytic Carbonylation Reactions. Topics in Organometallic Chemistry, 2006. vol 18. Springer, Berlin, Heidelberg. Crossref DOI: https://doi.org/10.1007/3418_015
(28). D.N. Gorbunov, M.V. Nenasheva, R.P. Matsukevich, M.V. Terenina, F.N. Putilin, Yu.S. Kardasheva, A.L. Maksimov, E.A. Karakhanov, Pet. Chem. 59 (2019) 1009–1016. Crossref DOI: https://doi.org/10.1134/S0965544119090056
(29). E.M. Martsinkevich, L.G. Bruk, L.V. Dashko, A.A. Afaunov, V.R. Flid, I.V. Sedov, Pet. Chem. 58 (2018) 1032–1035. Crossref DOI: https://doi.org/10.1134/S0965544118120083
(30). A. Mac Farlan, D. Liu, Studies in Surface Science and Catalysis 136 (2001) 411–416. Crossref DOI: https://doi.org/10.1016/S0167-2991(01)80338-4
(31). J. Vondran, M.R.L. Furst, G.R. Eastham, T. Seidensticker, D.J. Cole-Hamilton, Chem. Rev. 121 (2021) 6610–6653. Crossref DOI: https://doi.org/10.1021/acs.chemrev.0c01254
(32). V. Arutyunov, N. Poghosyan, M. Poghosyan, L. Tavadyan, O. Shapovalova, L. Strekova, Chem. Eng. J. 329 (2017) 231–237. Crossref DOI: https://doi.org/10.1016/j.cej.2017.05.109