Utilization of Waste Hydrocarbon Gases
DOI:
https://doi.org/10.18321/ectj1515Keywords:
natural gas, petrochemicals, associated petroleum gas, coalbed methane, biogas, syngas, methanol, refinery gasesAbstract
A variety of natural and anthropogenic sources of hydrocarbon gases make a significant contribution to the global emission of greenhouse gases. Reducing the anthropogenic emission of industrial hydrocarbon gases is impossible without new technologies that would allow their cost-effective utilization. The paper describes a number of new promising technologies based on autothermal gas-phase processes of partial oxidation and oxidative cracking of various hydrocarbons, such as associated petroleum gases, coalbed methane, refinery gases, and biogas, which open up prospects for a significant reduction in their flaring or emission into the atmosphere. Among the technologies under consideration are those involving their processing for subsequent use in the energy sector and low-tonnage production of various demanded chemicals.
References
(1). V. Arutyunov, Eurasian Chem.-Technol. J. 23 (2021) 67‒75. Crossref
(2). V. Arutyunov, V. Savchenko, I. Sedov, A. Arutyunov, A. Nikitin, Methane 1 (2022) 96–106. Crossref
(3). The Global Methane Budget 2000–2017. Crossref
(4). Leadership with impact. Annual progress report from the oil and gas climate initiative. URL
(5). S.M. Jokar, D.A. Wood, S. Sinehbaghizadeh, P. Parvasi, J. Javanmardi, J. Nat. Gas Sci. Eng. 94 (2021) 104078. Crossref
(6). A. Khalili-Garakani, M. Nezhadfard, M. Iravaninia, J. Clean. Prod. 346 (2022) 131218. Crossref
(7). BP Statistical Review of World Energy 2022, 71st edition. URL
(8). Global Gas Flaring Data. Global Gas Flaring Reduction Partnership (GGFR). The World Bank. URL
(9). Geng Meng, Chen Hao, Chen Yanpeng, Zeng Liangjun, Chen Shanshan, Jiang Xinchun. Coal Science and Technology 6 (2018) 64–68. Crossref
(10). V.S. Arutyunov, V.I. Vedeneev, A.M. Kutepov, Yu.A. Lebedev, A.D. Sedych, S.Z. Alekseev, I.Sh. Saifullin, Eurasian Chem.-Technol. J. 3 (2001) 107–111. Crossref
(11). V.S. Arutyunov, V.I. Savchenko, I.V. Sedov, A.V. Nikitin, K.Ya. Troshin, A.A. Borisov, I.G. Fokin, I.A. Makaryan, L.N. Strekova, Eurasian Chem.-Technol. J. 19 (2017) 265–271. Crossref
(12). K.Ya. Troshin, A.V. Nikitin, A.A. Belyaev, A.V. Arutyunov, A.A. Kiryushin, V.S. Arutyunov, Combust. Explos. Shock Waves 55 (2019) 526–533. Crossref
(13). V.S. Arutyunov, R.N. Magomedov, A.Yu. Proshina, L.N. Strekova, Chem. Eng. J. 238 (2014) 9–16. Crossref
(14). V.I. Savchenko, V.S. Arutyunov, I.G. Fokin, A.V. Nikitin, I.V. Sedov, I.A. Makaryan, J. Nat. Gas Sci. Eng. 31 (2016) 9–14. Crossref
(15). V. Arutyunov, K. Troshin, A. Nikitin, A. Belyaev, A. Arutyunov, A. Kiryushin, L. Strekova, Chem. Eng. J. 381 (2020) 122706. Crossref
(16). Methanol Science and Engineering. Eds. Angelo Basile, Francesco Dalena, 2018, Elsevier B.V. ISBN: 978-0-444-63903-5.
(17). Analysis of Natural Gas-to-Liquid Transportation Fuels via Fischer-Tropsch. DOE/NETL-2013/1597. National Energy Technology Laboratory, September 13, 2013. URL
(18). V. Arutyunov, Direct Methane to Methanol: Foundations and Prospects of the Process. Elsevier B.V., Amsterdam, The Netherlands, 2014. Crossref
(19). V.A. Kirillov, Yu.I. Amosov, A.B. Shigarov, N.A. Kuzin, V.V. Kireenkov, V.N. Parmon, Yu.V. Aristovich, M.A. Gritsay, A.A. Svetov, Theor. Found. Chem. Eng. 51 (2017) 12–26. Crossref
(20). Ib Dybkjær, K. Aasberg-Petersen, Can. J. Chem. Eng. 94 (2016) 607–612. Crossref
(21). A. Nikitin, A. Ozersky, V. Savchenko, I. Sedov, V. Shmelev, V. Arutyunov, Chem. Eng. J. 377 (2019) 120883. Crossref
(22). V.S. Arutyunov, L.N. Strekova, V.I. Savchenko, I.V. Sedov, A.V. Nikitin, O.L. Eliseev, M.V. Kryuchkov, A.L. Lapidus, Pet. Chem. 59 (2019) 370–379. Crossref
(23). I.V. Sedov, V.S. Arutyunov, M.V. Tsvetkov, D.N. Podlesniy, M.V. Salganskaya, A.Y. Zaichenko, Y.Y. Tsvetkova, A.V. Nikitin, A.V. Ozerskii, I.G. Fokin, E.A. Salgansky, Eurasian Chem.-Technol. J. 24 (2022) 157–163. Crossref
(24). X.B. Luo, M.H. Wang, X.G. Li, Y. Li, C. Chen, H. Sui, Fuel 158 (2015) 424–434. Crossref
(25). X.G. Li, Y. Li, L.H. Zhang, H. Li, Chem. Eng. Res. Des. 109 (2016) 258–272. Crossref
(26). D.N. Gorbunov, M.V. Terenina, Y.S. Kardasheva, E.A. Karakhanov, A.L. Maksimov, Petrol. Chem. 57 (2017) 1137–1140. Crossref
(27). A.V. Ozerskii, Ya.S. Zimin, I.K. Komarov, A.V. Nikitin, I.V. Sedov, I.G. Fokin, V.I. Savchenko, V.S. Arutyunov, Russ. J. Appl. Chem. 92 (2019) 1745−1750. Crossref
(28). V. Arutyunov, A. Nikitin, L. Strekova, V. Savchenko, I. Sedov, Catal. Today. 379 (2021) 23–27. Crossref
(29). D. Xu, H. Duan, W. Li, H. Hu, Energy Fuels 20 (2006) 955–958. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.