Hydrocarbon Synthesis from CO2 and H2 Using the Ultrafine Iron-Containing Catalytic Systems Based on Carbonized Cellulose

Authors

  • M.V. Kulikova A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninsky ave., Moscow, Russia
  • M.V. Chudakova A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninsky ave., Moscow, Russia
  • M.I. Ivantsov A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninsky ave., Moscow, Russia
  • О.S. Dementyva A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninsky ave., Moscow, Russia
  • A.L. Maksimov A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninsky ave., Moscow, Russia

DOI:

https://doi.org/10.18321/ectj1327

Keywords:

Hydrothermal carbonization, Carbon carrier, CO2 hydrogenation, Product distribution

Abstract

Carbon materials were formed by the hydrothermal carbonization of cellulose, which were used as support for carbon dioxide hydrogenation catalysts (Fe/C and Fe-Mn/C). In the presence of these catalytic systems, CO2 conversion reached 50%. It is shown that the manganese introduction into the Fe-containing catalytic system significantly affects the distribution of gaseous С14 products and liquid С5+ hydrocarbons. Promotion leads to the suppression of methane formation and an increase in the proportion of C2-C4 light olefins in gaseous products, as well as to intensification of secondary processes with the formation of a significant amount of iso-structures in liquid products. The different distribution of С16 alcohols in the oxygen-containing products on the Fe/C and Fe-Mn/C catalysts indicates the manganese effect on the routes of their formation.

References

(1). D.W. Kweku, O. Bismark, A. Maxwell, K.A. Desmond, K.B. Danso, E.A. Oti-Mensah, A.T. Quachie, B.B. Adormaa, Journal of Scientific Research and Reports 17 (2018) 1–9. Crossref DOI: https://doi.org/10.9734/JSRR/2017/39630

(2). A. Quadrelli, SETIS magazine. Carbon Capture Utilisation and Storage 11 (2016) 8–9. URL

(3). F. Fischer, H. Pichler, Brennstog-Chem. 14 (1933) 306.

(4). F. Fischer, Th. Bahr, H. Meusel, Brennstoff- Chem. 16 (1935) 466–469

(5). H. Kuster, Reduction of carbon dioxide to higher hydrocarbons at atmospheric pressures by catalysts of the iron group. Brennstoff-Chem, 17 (1936a) 221–228.

(6). Z. He, M. Cui, Q. Qian, J. Zhang, H. Liu, B. Han, Proceedings of the National Academy of Sciences 116 (2019) 12654–12659. Crossref DOI: https://doi.org/10.1073/pnas.1821231116

(7). H.M. Torres Galvis, J.H. Bitter, C.B. Khare, M. Ruitenbeek, A. Iulian Dugulan, K.P. de Jong, Science 335 (2012) 835–838. Crossref DOI: https://doi.org/10.1126/science.1215614

(8). E. Pérez-Mayoral, V. Calvino-Casilda, E. Soriano, Catal. Sci. Technol. 6 (2016) 1265–1291. Crossref DOI: https://doi.org/10.1039/C5CY01437A

(9). S.N. Khadzhiev, M.V. Kulikova, M.I. Ivantsov, L.M. Zemtsov, G.P. Karpacheva, D.G. Muratov, G.N. Bondarenko, N.V. Oknina, Petrol. Chem. 56 (2016) 522–528. Crossref DOI: https://doi.org/10.1134/S0965544116060049

(10). M. Kulikova, M. Chudakova, M. Ivantsov, A. Kuz’min, A. Krylova, A.L. Maksimov, J. Braz. Chem. Soc. 32 (2021) 287–298. Crossref DOI: https://doi.org/10.21577/0103-5053.20200179

(11). K. Krysanova, A. Krylova, V. Zaichenko, Fuel 256 (2019) 115929. Crossref DOI: https://doi.org/10.1016/j.fuel.2019.115929

(12). M. Sevilla, A.B. Fuertes, Carbon 47 (2009) 2281–2289. Crossref DOI: https://doi.org/10.1016/j.carbon.2009.04.026

(13). B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti, M.-M. Titirici, Adv. Mater. 22 (2010) 813–828. Crossref DOI: https://doi.org/10.1002/adma.200902812

(14). R. Li, A. Shahbazi, L. Wang, B. Zhang, C.-C. Chung, D. Dayton, Q. Yan, Fuel 225 (2018) 403–410. Crossref DOI: https://doi.org/10.1016/j.fuel.2018.03.179

(15). J. Lv, Z. Bai, L. Yang, C. Hu, J. Zhou, Russ. J. Electrochem. 49 (2013) 577–582. Crossref DOI: https://doi.org/10.1134/S1023193512090091

(16). P. Makowski, R. Demir Cakan, M. Antonietti, F. Goettmann, M.-M. Titirici, Chem. Commun. 8 (2008) 999–1001. Crossref DOI: https://doi.org/10.1039/b717928f

(17). K. Sheng, S. Zhang, J. Liu, Shuang E, C. Jin, Z. Xu, X. Zhang, J. Clean. Prod. 237 (2019) 117831. Crossref DOI: https://doi.org/10.1016/j.jclepro.2019.117831

(18). Q. Yan, C. Wan, J. Liu, J. Gao, F. Yu, J. Zhang, Zhiyong Cai, Green Chem. 15 (2013) 16‒31. Crossref DOI: https://doi.org/10.1039/c3gc37107g

(19). G. Yu, B. Sun, Y. Pei, S. Xie, S. Yan, M. Qiao, K. Fan, X. Zhang, B. Zong, J. Am. Chem. Soc. 132 (2010) 935–937. Crossref DOI: https://doi.org/10.1021/ja906370b

(20). W. Ma, Y. Ding, J. Yang, X. Liu, L.Lin, React. Kinet. Catal. Lett. 84 (2005) 11–19. Crossref DOI: https://doi.org/10.1007/s11144-005-0185-6

(21). M. Puccini, E. Stefanelli, A.L. Tasca, S. Vitolo, Chem. Eng. Trans. 67 (2018) 637–642.

(22). K.H. Adolfsson, N. Yadav, M. Hakkarainen, Curr. Opin. Green Sustain. Chem. 23 (2020) 18–24. Crossref DOI: https://doi.org/10.1016/j.cogsc.2020.03.008

(23). M. Martinelli, M.K. Gnanamani, S. LeViness, G. Jacobs, W.D. Shafer, Appl. Catal. A 608 (2020) 117740. Crossref DOI: https://doi.org/10.1016/j.apcata.2020.117740

(24). W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, RSC Advances 8 (2018) 7651–7669. Crossref DOI: https://doi.org/10.1039/C7RA13546G

(25). J. Barrault, C. Forquy, J.C. Menezo, R. Maurel, React. Kinet. Catal. Lett. 17 (1981) 373–378. Crossref DOI: https://doi.org/10.1007/BF02065849

(26). W.-P. Ma, Y.-L. Zhao, Y.-W. Li, Y.-Y. Xu, J.-L. Zhou, React. Kinet. Catal. Lett. 66 (1999) 217–223. Crossref DOI: https://doi.org/10.1007/BF02475793

(27). E.S. Lox, G.B. Marin, E. De Grave, P. Bussière, Appl. Catal. 40 (1988) 197–218. Crossref DOI: https://doi.org/10.1016/S0166-9834(00)80438-8

(28). C.R. Hubbard, R.L. Snyder, Powder Diffr. 3 (1988) 74–77. Crossref DOI: https://doi.org/10.1017/S0885715600013257

(29). Z. Tao, Y. Yang, C. Zhang, T. Li, M. Ding, H. Xiang, Y. Li, J. Nat. Gas Chem. 16 (2007) 278–285. Crossref DOI: https://doi.org/10.1016/S1003-9953(07)60060-7

(30). M. Feyzi, F. Jafari, J. Fuel Chem. Technol. 40 (2012) 550–557. Crossref DOI: https://doi.org/10.1016/S1872-5813(12)60021-8

(31). T. Li, Y. Yang, C. Zhang, X. An, H. Wan, Z. Tao, H. Xiang, Y. Li, F. Yi, B. Xu, Fuel 86 (2007) 921–928. Crossref DOI: https://doi.org/10.1016/j.fuel.2006.10.019

(32). A.L. Lapidus, A.Yu. Krylova, Ross. Khim. Zh. 44 (2000) 43–56 (in Russ.). URL

(33). A.Y. Krylova, V.I. Kurkin, M.V. Kulikova, A.S. Lyadov, S.A. Sagitov, Solid Fuel Chem. 45 (2011) 281–285. Crossref DOI: https://doi.org/10.3103/S0361521911040069

(34). Y.-N. Wang, W.-P. Ma, Y.-J. Lu, J. Yang, Y.- Y. Xu, H.-W. Xiang, Y.-W. Li, Y.-l. Zhao, B.-J. Zhang, Fuel 82 (2003) 195–213. Crossref DOI: https://doi.org/10.1016/S0016-2361(02)00154-0

(35). K. Opeyemi Otun, Y. Yao, X. Liu, D. Hildebrandt, Fuel 296 (2021) 120689. Crossref DOI: https://doi.org/10.1016/j.fuel.2021.120689

(36). G. Xu, Y. Zhu, J. Ma, H. Yan, Y. Xie, Stud. Surf. Sci. Catal. 112 (1997) 333–338. Crossref DOI: https://doi.org/10.1016/S0167-2991(97)80854-3

(37). R. Li, L. Zhang, S. Zhu, S. Fu, X. Dong, S. Ida, L. Zhang, L. Guo, Appl. Catal. A 602 (2020) 117715. Crossref DOI: https://doi.org/10.1016/j.apcata.2020.117715

(38). F. Lu, J. Huang, Q. Wu, Y. Zhang, Appl. Catal. A 621 (2021) 118213. Crossref DOI: https://doi.org/10.1016/j.apcata.2021.118213

(39). W. Ben Soltan, J. Sun, W. Wang, Z. Song, X. Zhao, Y. Mao, Z. Zhang, Sci. Total Environ. 819 (2022) 152844. Crossref DOI: https://doi.org/10.1016/j.scitotenv.2021.152844

Downloads

Published

25-07-2022

How to Cite

Kulikova, M., Chudakova, M., Ivantsov, M., Dementyva О., & Maksimov, A. (2022). Hydrocarbon Synthesis from CO2 and H2 Using the Ultrafine Iron-Containing Catalytic Systems Based on Carbonized Cellulose. Eurasian Chemico-Technological Journal, 24(2), 149–156. https://doi.org/10.18321/ectj1327

Issue

Section

Article

Most read articles by the same author(s)