Hydrogenation of CO in the Presence of Fe-Containing Materials Based on Carbon Supports

Authors

  • M.I. Ivantsov A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29, Leninsky prospekt, Moscow, Russia
  • K.O. Krysanova A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29, Leninsky prospekt, Moscow, Russia
  • A.A. Grabchak A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29, Leninsky prospekt, Moscow, Russia
  • M.V. Kulikova A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29, Leninsky prospekt, Moscow, Russia

DOI:

https://doi.org/10.18321/ectj1474

Keywords:

Hydrothermal carbonization, Lignin processing, Fischer-Tropsch synthesis, Carbon supports

Abstract

Hydrothermal carbonization of lignin was used to prepare a precursor of a carbon-containing support to obtain supported iron-containing catalysts for the hydrogenation of carbon monoxide. In the paper, the possibility of forming a carbon support prone to the deposition of metal ions was investigated. Deep structural transformations occurring in the polymer matrix of lignin were demonstrated by FTIR spectroscopy. The thermal stability of the support material was determined by thermal analysis in the region up to 400 °C. The formation of magnetite nanoparticles with a size of about 7‒8 nm at the stage of preliminary calcination of the metal-carbon system was shown by X-ray diffraction analysis (XRD). It was found that the resulting systems have high activity comparable to the activity of the system based on activated carbon: the conversion of carbon monoxide reached 98%, the yield of C5+ hydrocarbons reached 72 g/m3.

References

(1). J. van de Loosdrecht, F.G. Botes, I.M. Ciobica, A.C. Ferreira, et al., Comprehensive Inorganic Chemistry II (Second Edition) 7 (2013) 525‒557. Crossref

(2). M. Martinelli, M.K. Gnanamani, S. LeViness, G. Jacobs, et al., Appl. Catal. A 608 (2020) 117740. Crossref

(3). Y.-P. Pei, J.-X. Liu, Y.-H. Zhao, Y.-J. Ding, et al. ACS Catal. 5 (2015) 3620–3624. Crossref

(4). Z. Gholami, F. Gholami, Z. Tišler, J. Hubáček, et al., Catalysts 12 (2022) 174. Crossref

(5). Gerard P. van Der Laan, A.A.C.M. Beenackers, Cat. Rev. 41 (1999) 255‒318. Crossref

(6). Olusola O. James, Biswajit Chowdhury, M. Adediran Mesubic, Sudip Maity, RSC Adv. 2 (2012) 7347‒7366. Crossref

(7). Z. Teimouri, N. Abatzoglou, A.K. Dalai, Catalysts 11 (2021) 330. Crossref

(8). H. Jahangiri, J. Bennett, P. Mahjoubi, K. Wilson, et al., Catal. Sci. Technol. 4 (2014) 2210. Crossref

(9). Z. Gholami, Z. Tišler, V. Rubáš, Cat. Rev. 63 (2021) 512–595. Crossref

(10). E. de Smit, B.M. Weckhuysen, Chem. Soc. Rev. 37 (2008) 2758–2781. Crossref

(11). Y. Yang, H. Zhang, H. Ma, W. Qian, et al., Top Catal. (2022). Crossref

(12). S.A. Gardezi, J.T. Wolan, B. Joseph, Appl. Catal. A 447–448 (2012) 151–163. Crossref

(13). L. Fratalocchi, C.G. Visconti, L. Lietti, Appl. Catal. A 595 (2020) 117514. Crossref

(14). J.L. Eslava, A. Iglesias-Juez, M. Fernández-García, A. Guerrero-Ruiz, et al., Appl. Surf. Sci. 447 (2018) 307–314. Crossref

(15). Y. Han, G. Xiao, M. Chen, S. Chen, et al., Catal. Today 375 (2021) 1–9. Crossref

(16). H. Wan, B. Wu, H. Xiang, Y. Li, ACS Catal. 2 (2012) 1877–1883. Crossref

(17). A. Wang, M. Luo, B. Lü, Y. Song, et al., Mol. Catal. 509 (2021) 111601. Crossref

(18). Y. Chen, J. Wei, M.S. Duyar, V.V. Ordomsky, et al., Chem. Soc. Rev. 50 (2021) 2337–2366. Crossref

(19). H.Y. Ban, Z.W. Wang, Z.Q. Wang, Z.G. Fang, Adv. Mater. Res. 805-806 (2013) 232–235. Crossref

(20). Z. Tian, C. Wang, Z. Si, L. Ma, et al., Appl. Catal. A 541 (2017) 50–59. Crossref

(21). Y. Chen, L. Ma, R. Zhang, R. Ye, et al., Appl. Catal. B 312 (2022) 121393. Crossref

(22). M.U. Nisa, Y. Chen, X. Li, X. Jiang, et al., J. Taiwan Inst. Chem. Eng. 131 (2022) 104170. Crossref

(23). Z. Zhang, J. Zhang, X. Wang, R. Si, et al., J. Catal. 365 (2018) 71–85. Crossref

(24). M.M. Abu-Omar, K. Barta, G.T. Beckham, J.S. Luterbacher, et. al., Energy Environ. Sci. 14 (2021) 262–292. Crossref

(25). Y. Cao, M. He, S. Dutta, G. Luo, et al., Renew. Sustain. Energy Rev. 152 (2021) 111722. Crossref

(26). M.V. Chudakova, M.V. Kulikova, M.I. Ivantsov, G.N. Bondarenko, et al., Pet. Chem. 57 (2017) 694–699. Crossref

(27). R.A.C. Gomide, A.C.S. de Oliveira, D.A.C. Rodrigues, C.R. de Oliveira, et al., J. Polym. Environ. 28 (2020) 1326–1334. Crossref

(28). J. Hu, Q. Zhang, D.J. Lee, Bioresour. Technol. 247 (2018) 1181–1183. Crossref

(29). U. Kamran, Y.-J. Heo, J.W. Lee, S.-J. Park, Micromachines 10 (2019) 234. Crossref

(30). S.N. Khadzhiev, M.V. Kulikova, M.I. Ivantsov, L.M. Zemtsov, et al., Pet. Chem. 56 (2016) 522– 528. Crossref

(31). M.V. Kulikova, M.V. Chudakova, M.I. Ivantsov, A.E. Kuz’min, et al., J. Braz. Chem. Soc. 32 (2021) 287–298. Crossref

(32). Q. Yan, J. Street, F. Yu, Biomass Bioenerg. 83 (2015) 85–95. Crossref

(33). J.A. Libra, K.S. Ro, C. Kammann, A. Funke, et al., Biofuels 2 (2011) 71–106. Crossref

(34). X. Liu, F.P. Bouxin, J. Fan, V.L. Budarin, et al., J. Hazard Mater. 402 (2021) 123490. Crossref

(35). G.R. McMeeking, N. Good, M. Petters, G. McFiggans, et al., Chem. Phys. 11 (2011) 5099– 5112. Crossref

(36). A. Mirzaei, K. Janghorban, B. Hashemi, S.R. Hosseini, et al., Process. Appl. Ceram. 10 (2016) 209–217. Crossref

(37). V.V. Kachala, L.L Khemchyan, A.S. Kashin, N.V. Orlov, et al., Russ. Chem. Rev. 82 (2013) 648–685. Crossref

(38). A.N. Pour, M.R. Housaindokht, J. Ind. Eng. Chem. 20 (2014) 591–596. Crossref

(39). A.H. Rezayan, M. Mousavi, S. Kheirjou, G. Amoabediny, et al., J. Magn. Magn. Mater. 420 (2016) 210–217. Crossref

(40). G. Speranza, C 5 (2019) 84. Crossref

(41). Y. Tian, Y. Yin, H. Liu, H. Zhou, J. Water Process Eng. 46 (2022) 102583. Crossref

(42). Y. Wang, W. Ma, Y. Lu, J. Yang, et al., Fuel 82 (2003) 195–213. Crossref

(43). S.S. Wong, R. Shu, J. Zhang, H. Liu, et al., Chem. Soc. Rev. 49 (2020) 5510–5560. Crossref

(44). W. Ma, Y. Ding, J. Yang, X. Li, et al., React. Kinet. Catal. Lett. 84 (2005) 11–19. Crossref

(45). M.J. Valero-Romero, M.Á. Rodríguez-Cano, J. Palomo, J. Rodríguez-Miraso, et al., Front. Mater., Sec. Carbon-Based Materials 7 (2021) 617432. Crossref

(46). V.O. Kazak, P.A. Chernavskii, G.V. Pankina, A.Y. Khodakov, et al., Russ. J. Phys. Chem. 89 (2015) 2032–2035. Crossref

(47). A.Y. Khodakov, A. Griboval-Constant, R. Bechara, V.L. Zholobenko, J. Catal. 206 (2002) 230–241. Crossref

(48). A.P. Karmanov, O.Yu. Derkacheva, Khimija Rastitel’nogo Syr’ja 1 (2012) 61–70. (in Russian)

Downloads

Published

2022-12-12

How to Cite

Ivantsov, M., Krysanova, K., Grabchak, A., & Kulikova, M. (2022). Hydrogenation of CO in the Presence of Fe-Containing Materials Based on Carbon Supports. Eurasian Chemico-Technological Journal, 24(4), 303‒311. https://doi.org/10.18321/ectj1474

Issue

Section

Articles