Investigation of Synthesis and Deposition Methods for Cesium-Based Perovskite Quantum Dots for Solar Cell Applications

Authors

  • B. Davletiyarov Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan
  • K. Akmurzina Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan
  • A. Seralin National Laboratory Astana, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan
  • G. Bizhanova Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan
  • B. Baptayev National Laboratory Astana, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan
  • M. Balanay Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan
  • A. Ng Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan; National Laboratory Astana, Kabanbay Batyr Ave. 53, Nur-Sultan, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1437

Keywords:

Perovskites, Quantum dots, Hot injection, Recycling, Deposition, Synthesis, Thin films

Abstract

The CsPbI2Br perovskite quantum dots (PQDs) have great potential in photovoltaic applications due to their phase stability and optoelectronic properties. In this work, the synthesis technique of CsPbI2Br PQDs with the investigation of their properties and applications are identified. The critical issues and precautions for preparing PQDs are also discussed. It is also interesting to find that the collected supernatant solutions during the purification of PQDs can be recycled for preparing other types of PQDs. Meanwhile, this work demonstrates different approaches (i) thermal annealing, usage of (ii) methyl acetate and (iii) ethyl acetate as anti-solvents for preparing CsPbI2Br PQDs in the form of thin films on glass substrates. The obtained samples are characterized in terms of morphology, structural and optical properties. The results of this work can provide useful information for researchers, particularly for those who are starting to synthesize PQDs for fabrications of solid-state devices.

References

(1). F. Bella, P. Renzi, C. Cavallo, C. Gerbaldi, Chem.- Eur. J. 24 (2018). 12183‒12205. Crossref

(2). W. Chen, X. Li, Y. Li, Y. Li, Energy Environ. Sci. 13 (2020) 1971‒1996. Crossref

(3). W. Chi, S.K. Banerjee, Small 16 (2020) 1907531. Crossref

(4). C. Lee, Y. Shin, G.G. Jeon, D. Kang, et al., Energies 14 (2021) 201. Crossref

(5). Z. Qiu, N. Li, Z. Huang, Q. Chen, et al., Small Methods 4 (2020) 1900877. Crossref

(6). L. Liu, A. Najar, K. Wang, M. Du, et al., Adv. Sci. 9 (2022) 2104577. Crossref

(7). R. Syah, A. Davarpanah, M.K.M. Nasution, Q. Wali, et al., Coatings 11 (2021) 1173. Crossref

(8). E.A. Erazo, H.E. Sánchez-Godoy, A.F. Gualdrón- Reyes, S. Masi, et al., Nanomaterials 10 (2020) 1586. Crossref

(9). C. Liu, M. Hu, X. Zhou, J. Wu, et al., NPG Asia Mater. 10 (2018) 552–561. Crossref

(10). NREL, Https://Www.Nrel.Gov/Pv/Cell-Efficiency. Html, Best Research-Cell Efficiency Chart (2022).

(11). H. Li, T. Luo, S. Zhang, Z. Sun, et al., Energy and Environmental Materials 4 (2021) 46‒64. Crossref

(12). W. Chi, S.K. Banerjee, Angew. Chem. 134 (2022) e202112412. Crossref

(13). R.X. Yang, L.Z. Tan, J. Chem. Phys. 152 (2020) 034702. Crossref

(14). J. Chen, D. Jia, E.M.J. Johansson, A. Hagfeldt, et al., Energy Environ. Sci. 14 (2021) 224‒261. Crossref

(15). B. Chaudhary, Y.K. Kshetri, H.S. Kim, S.W. Lee, et al., Nanotechnology 32 (2021). Crossref

(16). L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, et al., Nano Lett. 15 (2015) 3692–3696. Crossref

(17). H. Wang, H. Bian, Z. Jin, H. Zhang, et al., Chem. Mater. 31 (2019) 6231–6238. Crossref

(18). J. Kim, S. Cho, F. Dinic, J. Choi, et al., Nano Energy 75 (2020) 104985. Crossref

(19). Y. Wang, J. Yuan, X. Zhang, X. Ling, et al., Adv. Mater. 32 (2020) 2000449. Crossref

(20). R. Han, Q. Zhao, J. Su, X. Zhou, et al., J. Phys. Chem. C 125 (2021) 8469–8478. Crossref

(21). X. Zhang, H.C. Wang, A.C. Tang, S.Y. Lin, et al., Chem. Mater. 28 (2016) 8493–8497. Crossref

(22). H. Huang, L. Polavarapu, J.A. Sichert, A.S. Susha, et al., NPG Asia Mater. 8 (2016). Crossref

(23). C.J. Thomas, Y. Zhang, A. Guillaussier, K. Bdeir, et al., Chem. Mater. 31 (2019) 9750–9758. Crossref

(24). R. An, F. Zhang, X. Zou, Y. Tang, et al., ACS Appl. Mater. Interfaces 10 (2018) 39222–39227. Crossref

(25). Y. Li, X. Wang, W. Xue, W. Wang, et al., Nano Res. 12 (2019) 785–789. Crossref

(26). Q. Zeng, X. Zhang, C. Liu, T. Feng, et al., Solar RRL 3 (2019) 1800239. Crossref

(27). A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, et al., Science 354 (2016) 92–95. Crossref

(28). S.Y. Lien, P.J. Lai, W.R. Chen, C.H. Liu, et al., Crystals 12 (2022). Crossref

(29). S. Rühle, Solar Energy 130 (2016) 139–147. Crossref

(30). H. Chen, M. Li, B. Wang, S. Ming, et al., J. Alloy. Compd. 862 (2021) 158442. Crossref

(31). P. Cottingham, R.L. Brutchey, Chem. Mater. 28 (2016) 7574–7577. Crossref

(32). J. Zhou, F. Huang, H. Lin, Z. Lin, et al., J. Mater. Chem. C 4 (2016) 7601–7606. Crossref

(33). S.C. Shei, W.J. Chiang, S.J. Chang, Nanoscale Res. Lett. 10 (2015) 122. Crossref

(34). Z. Zhao, W. Xu, G. Pan, Y. Liu, et al., Mater. Res. Bull. 112 (2019) 142–146. Crossref

(35). M.R. Linaburg, E.T. McClure, J.D. Majher, P.M. Woodward, Chem. Mater. 29 (2017). Crossref

(36). D. Jia, J. Chen, X. Mei, W. Fan, et al., Energy Environ. Sci. 14 (2021) 4599–4609. Crossref

(37). D. Ghosh, M.Y. Ali, D.K. Chaudhary, S. Bhattacharyya, Solar Energy Mater. Sol. Cells 185 (2018) 28–35. Crossref

(38). S. Christodoulou, F. di Stasio, S. Pradhan, A. Stavrinadis, et al., J. Phys. Chem. C 122 (2018). 7621–7626. Crossref

(39). D. Ghosh, Y.M. Ali, A. Ghosh, A. Mandal, et al., J. Phys. Chem. C 125 (2021) 5485–5493. Crossref

(40). L. Hu, Q. Zhao, S. Huang, J. Zheng, et al., Nat. Commun. 12 (2021) 466. Crossref

(41). J. Khan, X. Zhang, J. Yuan, Y. Wang, et al., ACS Energy Lett. 5 (2020) 3322–3329. Crossref

(42). D. Aidarkhanov, Z. Ren, C.K. Lim, Z. Yelzhanova, et al., Solar Energy Mater. Sol. Cells 215 (2020) 110648. Crossref

(43). S. Akin, Y. Altintas, E. Mutlugun, S. Sonmezoglu, Nano Energy 60 (2019) 557–566. Crossref

(44). F. Cheng, R. He, S. Nie, C. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 5855–5866. Crossref

Downloads

Published

2022-10-10

How to Cite

Davletiyarov, B., Akmurzina, K., Seralin, A., Bizhanova, G., Baptayev, B., Balanay, M., & Ng, A. (2022). Investigation of Synthesis and Deposition Methods for Cesium-Based Perovskite Quantum Dots for Solar Cell Applications. Eurasian Chemico-Technological Journal, 24(3), 241–249. https://doi.org/10.18321/ectj1437

Issue

Section

Articles

Most read articles by the same author(s)