Designing Water-Repellent Concrete Composites Using Cheap Organic Materials

Authors

  • A. Seralin Renewable Energy Systems and Materials Science Lab, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, Kazakhstan
  • G. Sugurbekova Renewable Energy Systems and Materials Science Lab, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, Kazakhstan; L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, Kazakhstan 
  • A. Kurbanova Renewable Energy Systems and Materials Science Lab, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, Kazakhstan
  • N. Nuraje Renewable Energy Systems and Materials Science Lab, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, Kazakhstan; Department of Chemical and Materials Engineering, School of Engineering and Digital Science, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, Kazakhstan
  • O. Toktarbaiuly Renewable Energy Systems and Materials Science Lab, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1438

Abstract

In this paper, it was successfully established a novel and cheap water-proofing technique for protecting concrete from further damage caused by water leakage. This technique originated from the proper design and rational formulation of the materials including hydrophobic sand, silicon oil, tyre crumb rubber, and recycled motor oil. From this research, it can be seen that only one concrete showed hydrophobicity and all obtained concrete demonstrated significantly and in some cases extremely low water permeability relative to control concrete. To the best of current knowledge, this is the first paper, which studied the surface and water sorption properties of concrete modified by the addition of hydrophobic sand obtained by patented technology. The goniometer investigated the surface properties of the modified concrete. The results obtained including density, contact angle, change of weight, and maximum load capacity under high electro-hydraulic pressure were compared and discussed.

References

(1). H. Yao, Z. Xie, C. Huang, Q. Yuan, Z. Yu, Constr. Buil. Mater. 299 (2021) 124255. Crossref

(2). I.R. Salcedo, A. Cuesta, S. Shirani, L. León- Reina, M.A. G. Aranda, Materials 14 (2021) 6953. Crossref

(3). S.K. Verma, S.S. Bhadauria, S. Akhtar, Sci. World J. 2014 (2014) 957904. Crossref

(4). 222R-01: Protection of Metals in Concrete Against Corrosion. ACI Committee 222, 2002. ISBN: 9780870310607

(5). Hanley-Wood, LLC, “Chemical Attack on Hardened Concrete”, Concrete Construction, 1975, p. 328‒333.

(6). Z. Jiang, S. Li, C. Fu, Z. Domg, X. Zhang, N. Jin, T. Xia, Materials 14 (2021) 7691. Crossref

(7). J. González-Coneo, R. Zarzuela, F. Elhaddad, L.M. Carrascosa, M.L. Almoraima Gil, M.J. Mosquera, J. Build. Eng. 46 (2022) 103729. Crossref

(8). K.H. Kim, M.J. Kim, H. Kim, K.-Y. Ann, Adv. Mater. Sci. Eng. 2020 (2020) 4810259. Crossref

(9). G. Morán, R. Méallet-Renault, Superhydrophobic Surfaces Toward Prevention of Biofilm- Associated Infections. in Bacterial Pathogenesis and Antibacterial Control (ed. Kırmusaoğlu, S.) (InTech, 2018). Crossref

(10). C.L. Nistor, C.I. Mihaescu, D. Bala, I.C. Gifu, C.M. Ninciuleanu, S.G. Burlacu, C. Petcu, M.-G. Vladu, A. Ghebaur, L. Stroea, L.O. Cinteza, Coatings 12 (2022) 253. Crossref

(11). F. Tittarelli, G. Moriconi, Cement Concrete Res. 38 (2008) 1354–1357. Crossref

(12). M.J. Al-Kheetan, M.M. Rahman, D.A. Chamberlain, Struct. Concrete 19 (2018) 1504– 1511. Crossref

(13). F. Wang, S. Lei, J. Ou, W. Li, Appl. Surf. Sci. 507 (2020) 145016. Crossref

(14). W. Wang, S. Wang, D. Yao, X. Wang, X. Yu, Y. Zhang, Constr. Buil. Mater. 238 (2020) 117626. Crossref

(15). S. Muzenski, I. Flores-Vivian, K. Sobolev, Constr. Build. Mater. 81 (2015) 291‒297. Crossref

(16). J. Zhu, K. Liao, Mater. Chem. Phys. 250 (2020) 123064. Crossref

(17). W. She, Z. Zheng, Q. Zhang, W. Zuo, J. Yang, Y. Zhang, L. Zheng, J. Hong, C. Miao, Cement Concrete Res. 131 (2020) 106029. Crossref

(18). L. Lei, Q. Wang, S. Xu, N. Wang, X. Zheng, Constr. Build. Mater. 251 (2020) 118946. Crossref

(19). B.S. Hamad, A.A. Rteil, M. El-Fadel, Constr. Build. Mater. 17 (2003) 311–318. Crossref

(20). G.E. Abdelaziz, Utilization of used-engine oil in concrete as a chemical admixture, HBRC Journal, Housing and Building National Research Centre, Egypt, 5 (2009).

(21). Mohammed Noori Hussein. Properties of Concrete Containing New and Used Engines Oil. International Journal of Science and Research, 4 (2015) Paper ID: NOV151804.

(22). N. Shafiq, M.F. Nuruddin, S. Beddu, International Journal of Sustainable Construction Engineering and Technology 2 (2011) 72‒82.

(23). M.I. Faraz, U. Jain, K. Jain, S. Singh, Int. J. Civ. Eng. 2 (2015) 12–15. Crossref

(24). A. Seralin, G. Sugurbekova. Method of obtaining of hydrophobic material. Patent KZ №32711. National Institute of Intellectual Property of Republic of Kazakhstan, 2016.

(25). O. Toktarbaiuly, A. Kurbanova, O. Ualibek, A. Seralin, T. Zhunussova, G. Sugurbekova, N. Nuraje, Bulletin of the University of Karaganda – Chemistry 107 (2022) 158‒167. Crossref

(26). R. Zulkarnay, O. Ualibek, O. Toktarbaiuly, P.W. May, Bull. Mater. Sci. 44 (2021) 112. Crossref

Downloads

Published

2022-10-10

How to Cite

Seralin, A., Sugurbekova, G., Kurbanova, A., Nuraje, N., & Toktarbaiuly, O. (2022). Designing Water-Repellent Concrete Composites Using Cheap Organic Materials. Eurasian Chemico-Technological Journal, 24(3), 251–258. https://doi.org/10.18321/ectj1438

Issue

Section

Articles