Desert Water Saving and Transportation for Enhanced Oil Recovery: Bridging the Gap for Sustainable Oil Recovery

Authors

  • O. Toktarbaiuly Renewable Energy Systems and Material Science Laboratory, National Laboratory Astana, Nazarbayev University, 53, Kabanbay Batyr St., Astana, Kazakhstan
  • A. Kurbanova Renewable Energy Systems and Material Science Laboratory, National Laboratory Astana, Nazarbayev University, 53, Kabanbay Batyr St., Astana, Kazakhstan
  • G. Imekova Laboratory of Engineering Profile, Satbayev University, 22a, Satbayev St., Almaty, Kazakhstan; L.N. Gumilyov Eurasian National University, 2, Satbayev St., Astana, Kazakhstan
  • M. Abutalip Renewable Energy Systems and Material Science Laboratory, National Laboratory Astana, Nazarbayev University, 53, Kabanbay Batyr St., Astana, Kazakhstan; Laboratory of Engineering Profile, Satbayev University, 22a, Satbayev St., Almaty, Kazakhstan
  • Zh. Toktarbay Laboratory of Engineering Profile, Satbayev University, 22a, Satbayev St., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1522

Keywords:

superhydrophobic sand, Enhanced Oil Recovery (EOR), water storage, water saving, water-stressed regions

Abstract

With concerns about water scarcity in arid regions, innovative solutions are imperative to meet the increasing water demand for Enhanced Oil Recovery (EOR) processes. This article presents a study on the preparation of superhydrophobic sand for water-saving and storage, with a focus on potential applications in EOR. The results of the research indicate that the maximum water contact angle after sand hydrophobization was 158°. The water storage capacity of the sand was assessed by growing plants in soil layered with superhydrophobic sand. When superhydrophobic sand was used both above and below the soil, the soil remained moist for more than 10 days. In contrast, without the use of superhydrophobic sand, soil moisture lasted for only 3 days. This research demonstrates the potential of superhydrophobic sand in prolonging soil moisture, making it a valuable asset for water-saving applications in EOR and arid regions.

References

(1). F.-R. Ahmadun, A. Pendashteh, L.C. Abdullah, et al., J. Hazard. Mater. 170 (2009) 530–551. Crossref

(2). C. Zhang, X. Long, X. Tang, A. Lekomtsev, G.Y. Korobov, Energy Rep. 7 (2021) 1720–1727. Crossref

(3). M. Tajmiri, M.R. Ehsani, Ambient Sci. 4 (2017) 7–12. Crossref

(4). S. Liu, T. Cai, X. Shen, et al., Ceram. Int. 45 (2019) 21263–21269. Crossref

(5). H. Wang, D.T. Wang, X.Y. Zhang, Compos. Sci. Technol. 213 (2021) 108954. Crossref

(6). T. Austad, Water-Based EOR in Carbonates and Sandstones: New Chemical Understanding of the EOR Potential Using “Smart Water”. In Enhanced oil recovery Field case studies. Gulf Professional Publishing, Houston, USA, 2013, p. 301–335. Crossref

(7). L. Chen, Y. Si, Z. Guo, et al., J. Mater. Chem. 5 (2017) 6416–6423. Crossref

(8). W. Chen, W. Wang, D. Luong, et al., ACS Appl. Mater. Interfaces 14 (2022) 35053–35063. Crossref

(9). S.S. Ray, R. Soni, I. Kim, et al., Environ. Technol. Innov. 28 (2022) 102849. Crossref

(10). X. Men, B. Ge, P. Li, et al., J. Taiwan Inst. Chem. Eng. 60 (2016) 651–655. Crossref

(11). A. Syrlybekov, E. Arca, R. Verre, et al., Surf. Interf. Anal. 47 (2015) 969–977. Crossref

(12). O. Toktarbaiuly, A. Syrlybekov, N. Nuraje, G. Sugurbekova, I.V. Shvets, Mater. Today Proc. 71 (2022) 69–77. Crossref

(13). V. Usov, C.Ó Coileáin, A.N. Chaika, et al., Phys. Rev. B Condens. Matter Mater. Phys. 102 (2020) 035407. Crossref

(14). O. Toktarbaiuly, A. Syrlybekov, O, Mauit, et al., Mater. Today Proc. 49. (2022) 2469–2473. Crossref

(15). Y. Liu, C. H. Choi, Coatings 11 (2021) 151. Crossref

(16). E. Mosayebi, S. Azizian, N. Noei, Macromol. Mater. Eng. 305 (2020). Crossref

(17). A.M. Atta, M.M. Abdullah, H.A. Al-Lohedan, N.H. Mohamed, Coatings 9 (2019) 124. Crossref

(18). A. Gallo Jr., K. Odokonyero, M.A. Mousa, et al., ACS Agric. Sci. Technol. 2 (2022) 276–288. Crossref

(19). J. Chlachula, N.Z. Zhensikbayeva, A.V. Yegorina, et al., Geosciences 11 (2021) 156. Crossref

(20). M. Nueraji, Z. Toktarbay, A. Ardakkyzy, et al., Environ. Res. 220 (2023) 115212. Crossref

(21). A. Kurbanova, N. Myrzakhmetova, N. Akimbayeva, et al., Coatings 12 (2022) 1422. Crossref

(22). O. Toktarbaiuly, A. Kurbanova, O. Ualibek, et al., Bull. Karaganda Univ. Chem. Ser. 107 (2022) 158–167. Crossref

(23). P. Jaramillo Díaz, A. Calle-Loor, C. Gualoto E, Bolaños, D. Cevallos, Plants 11 (2022) 2848. Crossref

(24). K. Abdiyev, S. Azat, E. Kuldeyev, et al., Water 15 (2023) 2007. Crossref

(25). L. Chen, Y. Si, Z. Guo, et al., J. Mater. Chem. A. 5 (2017) 6416–6423. Crossref

(26). K.Z. Abdiyev, M. Maric, B.Y. Orynbayev, et al., Polym. Bull. 79 (2022) 10741–10756. Crossref

(27). C. Chen, X. Peng, Colloids Surf. A: Physicochem. Eng. Asp. 657 (2023) 130517. Crossref

(28). H. Williams, Phys. Teach. 61 (2023) 138–139. Crossref

(29). A. Seralin, G. Sugurbekova, A. Kurbanova, N. Nuraje, O. Toktarbaiuly, Eurasian Chem.-Technol. J. 24 (2022) 251–258. Crossref

Downloads

Published

2023-11-20

How to Cite

Toktarbaiuly, O., Kurbanova, A., Imekova, G., Abutalip, M., & Toktarbay, Z. (2023). Desert Water Saving and Transportation for Enhanced Oil Recovery: Bridging the Gap for Sustainable Oil Recovery . Eurasian Chemico-Technological Journal, 25(3), 193–200. https://doi.org/10.18321/ectj1522

Issue

Section

Articles