Effects of Electrospinning Parameters on the Morphology of Electrospun Fibers
DOI:
https://doi.org/10.18321/ectj1634Keywords:
hydrophobic membranes, electrospun fibers, electrospinning parameters, electrospun polystyrene, electrospinning processAbstract
Hydrophobic electrospun membranes have a lot of applications in different fields. It is very difficult to increase the hydrophobicity of membranes for a specific application. This study investigates the effects of various electrospinning parameters on the morphology and hydrophobicity of polystyrene (PS) electrospun membranes. Polystyrene fibers were used as a reference for the study. Different parameters such as polymer concentrations, diameter of needles, and applied voltage were tested to study the influence on the hydrophobicity of electrospun fibers. Polystyrene fibers were electrospun at different concentrations from 5 to 20 wt.%, needles with a diameter from 0.5 to 3 mm were used, and voltage was applied between 8.06–16.05 kV. The surface morphology of polystyrene fibers and hydrophobicity were studied with a scanning electronic microscope and contact angle measurements. Based on the results of the study, higher polymer concentrations and voltages produce thinner fibers and more hydrophobic membranes. The results of this paper can be applied to the fabrication of different characteristic membranes for specific applications like water conservation, purification, and other fields.
References
(1). Z. Suiindik, E. Adotey, N. Kydyrbay, et al., Eurasian Chem.-Technol. J. 26 (2024) 53–60. Crossref DOI: https://doi.org/10.18321/ectj1607
(2). O. Toktarbaiuly, A. Kurbanova, G. Imekova, et al., Eurasian Chem.-Technol. J. 25 (2023) 193–200. Crossref DOI: https://doi.org/10.18321/ectj1522
(3). A. Kurbanova, N. Myrzakhmetova, N. Akimbayeva, et al., Coatings 12 (2022) 1422. Crossref DOI: https://doi.org/10.3390/coatings12101422
(4). A. Seralin, G. Sugurbekova, A. Kurbanova, et al., Eurasian Chem.-Technol. J. 24 (2022) 251–258. Crossref DOI: https://doi.org/10.18321/ectj1438
(5). C.L. Casper, J.S. Stephens, N.G. Tassi, et al., Macromolecules 37 (2003) 573–578. Crossref DOI: https://doi.org/10.1021/ma0351975
(6). M.A. Bonakdar, D. Rodrigue, Macromol 4 (2024) 58–103. Crossref DOI: https://doi.org/10.3390/macromol4010004
(7). D. Ji, Y. Lin, X. Guo, et al., Nat. Rev. Meth. Primers 4 (2024). Crossref DOI: https://doi.org/10.1038/s43586-023-00278-z
(8). S. Mondal, Polym. Advan. Technol. 25 (2013) 179–183. Crossref DOI: https://doi.org/10.1002/pat.3220
(9). K.H.K. Chan, M. Kotaki, J. Appl. Polym. Sci. 111 (2008) 408–416. Crossref DOI: https://doi.org/10.1002/app.28994
(10). C.H. Park, H.R. Pant, C.S. Kim, Text. Res. J. 84 (2014) 1044–1058. Crossref DOI: https://doi.org/10.1177/0040517513517961
(11). N. Nuraje, W.S. Khan, Y. Lei, et al., J. Mater. Chem. A 1 (2013) 1929–1946. Crossref DOI: https://doi.org/10.1039/C2TA00189F
(12). C.L. De Dicastillo, C. Villegas, L. Garrido, et. al., Polymers 10 (2018) 479. Crossref DOI: https://doi.org/10.3390/polym10050479
(13). M. Wei, B. Kang, C. Sung, J. Mead, Macromol. Mater. Eng. 291 (2006) 1307–1314. Crossref DOI: https://doi.org/10.1002/mame.200600284
(14). R. Asmatulu, M. Ceylan, N. Nuraje, Langmuir 27 (2010) 504–507. Crossref DOI: https://doi.org/10.1021/la103661c
(15). M. Nueraji, Z. Toktarbay, A. Ardakkyzy, et al., Environ. Res. 220 (2023) 115212. Crossref DOI: https://doi.org/10.1016/j.envres.2023.115212
(16). J.J. Feng, Phys. Fluids 14 (2002) 3912–3926. Crossref DOI: https://doi.org/10.1063/1.1510664
(17). I. Shim, T. Kouh, New Phys.: Sae Mulli 70 (2020) 531–534. Crossref DOI: https://doi.org/10.3938/NPSM.70.531
(18). V. Beachley, X. Wen, Mater. Sci. Eng. C 29 (2009) 663–668. Crossref DOI: https://doi.org/10.1016/j.msec.2008.10.037
(19). A.S. Levitt, R. Vallett, G. Dion, C.L. Schauer, J. Appl. Polym. Sci. 135 (2018) 46404. Crossref DOI: https://doi.org/10.1002/app.46404
(20). Z. Liu, K. Ju, Z. Wang, et al., Nanoscale Res Lett. 14 (2019) 310. Crossref DOI: https://doi.org/10.1186/s11671-019-3148-y
(21). N.M. Jalal, A.R. Jabur, S. Allami, J. Phys. Conf. Ser. 1879 (2021) 032085. Crossref DOI: https://doi.org/10.1088/1742-6596/1879/3/032085
(22). S.T. Yohe, J.D. Freedman, E.J. Falde, et al., Adv. Funct. Mater. 23 (2013) 3628–3637. Crossref DOI: https://doi.org/10.1002/adfm.201203111
(23). V. Sencadas, C. Ribeiro, J. Nunes-Pereira, et al., Appl. Phys. A 109 (2012) 685–691. Crossref DOI: https://doi.org/10.1007/s00339-012-7101-5
(24). J. Macossay, A. Marruffo, R. Rincon, et al., Polym. Adv. Technol. 18 (2007) 180–183. Crossref DOI: https://doi.org/10.1002/pat.844
(25). H.M.M. Albetran, Y. Dong, I.M. Low, J. Asian Ceram. Soc. 3 (2015) 292–300. Crossref DOI: https://doi.org/10.1016/j.jascer.2015.05.001
(26). N. Amariei, L.R. Manea, A.P. Bertea, et al., IOP Conf. Ser.: Mater. Sci. Eng. 209 (2017) 012092. Crossref DOI: https://doi.org/10.1088/1757-899X/209/1/012092
(27). A.H. Hekmati, A. Rashidi, R. Ghazisaeidi, J. Drean, Text. Res. J. 83 (2013) 1452–1466. Crossref DOI: https://doi.org/10.1177/0040517512471746
(28). B. Tarus, N. Fadel, A. Al-Oufy, M. El-Messiry, Alex. Eng. J. 55 (2016) 2975-2984. Crossref DOI: https://doi.org/10.1016/j.aej.2016.04.025
(29). Y. Sailaukhanuly, A. Popova, T. Mansuret, et al., Eurasian Chem.-Technol. J. 24 (2022) 341‒350. Crossref DOI: https://doi.org/10.18321/ectj1478
(30). A. Akhmetzhan, N. Abeu, S.N. Longinos, et al., Polymers 13 (2021) 3084. Crossref DOI: https://doi.org/10.3390/polym13183084
(31). O. Yessimova, S. Kumargaliyeva, M. Kerimkulova, et al., Rasayan J. Chem. 13 (2020) 481-487. Crossref DOI: https://doi.org/10.31788/RJC.2020.1315566
(32). K. Abdiyev, S. Azat, E. Kuldeyev, et al., Water 15 (2023) 2007. Crossref DOI: https://doi.org/10.3390/w15112007
(33). N.V. Sidorova, M.A. Imanbayev, B. Khalkhabay, et al., J. Water Process Eng. 58 (2024) 104861. Crossref DOI: https://doi.org/10.1016/j.jwpe.2024.104861
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.