Effects of Electrospinning Parameters on the Morphology of Electrospun Fibers

Authors

  • A. Ardakkyzy Laboratory of Engineering Profile, Satbayev University, Satbayev Str. 22a, Almaty, Kazakhstan; Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr ave. 53, Astana, Kazakhstan
  • N. Nuraje Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, Kazakhstan
  • Zh. Toktarbay Laboratory of Engineering Profile, Satbayev University, Satbayev Str. 22a, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1634

Keywords:

hydrophobic membranes, electrospun fibers, electrospinning parameters, electrospun polystyrene, electrospinning process

Abstract

Hydrophobic electrospun membranes have a lot of applications in different fields. It is very difficult to increase the hydrophobicity of membranes for a specific application. This study investigates the effects of various electrospinning parameters on the morphology and hydrophobicity of polystyrene (PS) electrospun membranes. Polystyrene fibers were used as a reference for the study. Different parameters such as polymer concentrations, diameter of needles, and applied voltage were tested to study the influence on the hydrophobicity of electrospun fibers. Polystyrene fibers were electrospun at different concentrations from 5 to 20 wt.%, needles with a diameter from 0.5 to 3 mm were used, and voltage was applied between 8.06–16.05 kV. The surface morphology of polystyrene fibers and hydrophobicity were studied with a scanning electronic microscope and contact angle measurements. Based on the results of the study, higher polymer concentrations and voltages produce thinner fibers and more hydrophobic membranes. The results of this paper can be applied to the fabrication of different characteristic membranes for specific applications like water conservation, purification, and other fields.

References

(1). Z. Suiindik, E. Adotey, N. Kydyrbay, et al., Eurasian Chem.-Technol. J. 26 (2024) 53–60. Crossref

(2). O. Toktarbaiuly, A. Kurbanova, G. Imekova, et al., Eurasian Chem.-Technol. J. 25 (2023) 193–200. Crossref

(3). A. Kurbanova, N. Myrzakhmetova, N. Akimbayeva, et al., Coatings 12 (2022) 1422. Crossref

(4). A. Seralin, G. Sugurbekova, A. Kurbanova, et al., Eurasian Chem.-Technol. J. 24 (2022) 251–258. Crossref

(5). C.L. Casper, J.S. Stephens, N.G. Tassi, et al., Macromolecules 37 (2003) 573–578. Crossref

(6). M.A. Bonakdar, D. Rodrigue, Macromol 4 (2024) 58–103. Crossref

(7). D. Ji, Y. Lin, X. Guo, et al., Nat. Rev. Meth. Primers 4 (2024). Crossref

(8). S. Mondal, Polym. Advan. Technol. 25 (2013) 179–183. Crossref

(9). K.H.K. Chan, M. Kotaki, J. Appl. Polym. Sci. 111 (2008) 408–416. Crossref

(10). C.H. Park, H.R. Pant, C.S. Kim, Text. Res. J. 84 (2014) 1044–1058. Crossref

(11). N. Nuraje, W.S. Khan, Y. Lei, et al., J. Mater. Chem. A 1 (2013) 1929–1946. Crossref

(12). C.L. De Dicastillo, C. Villegas, L. Garrido, et. al., Polymers 10 (2018) 479. Crossref

(13). M. Wei, B. Kang, C. Sung, J. Mead, Macromol. Mater. Eng. 291 (2006) 1307–1314. Crossref

(14). R. Asmatulu, M. Ceylan, N. Nuraje, Langmuir 27 (2010) 504–507. Crossref

(15). M. Nueraji, Z. Toktarbay, A. Ardakkyzy, et al., Environ. Res. 220 (2023) 115212. Crossref

(16). J.J. Feng, Phys. Fluids 14 (2002) 3912–3926. Crossref

(17). I. Shim, T. Kouh, New Phys.: Sae Mulli 70 (2020) 531–534. Crossref

(18). V. Beachley, X. Wen, Mater. Sci. Eng. C 29 (2009) 663–668. Crossref

(19). A.S. Levitt, R. Vallett, G. Dion, C.L. Schauer, J. Appl. Polym. Sci. 135 (2018) 46404. Crossref

(20). Z. Liu, K. Ju, Z. Wang, et al., Nanoscale Res Lett. 14 (2019) 310. Crossref

(21). N.M. Jalal, A.R. Jabur, S. Allami, J. Phys. Conf. Ser. 1879 (2021) 032085. Crossref

(22). S.T. Yohe, J.D. Freedman, E.J. Falde, et al., Adv. Funct. Mater. 23 (2013) 3628–3637. Crossref

(23). V. Sencadas, C. Ribeiro, J. Nunes-Pereira, et al., Appl. Phys. A 109 (2012) 685–691. Crossref

(24). J. Macossay, A. Marruffo, R. Rincon, et al., Polym. Adv. Technol. 18 (2007) 180–183. Crossref

(25). H.M.M. Albetran, Y. Dong, I.M. Low, J. Asian Ceram. Soc. 3 (2015) 292–300. Crossref

(26). N. Amariei, L.R. Manea, A.P. Bertea, et al., IOP Conf. Ser.: Mater. Sci. Eng. 209 (2017) 012092. Crossref

(27). A.H. Hekmati, A. Rashidi, R. Ghazisaeidi, J. Drean, Text. Res. J. 83 (2013) 1452–1466. Crossref

(28). B. Tarus, N. Fadel, A. Al-Oufy, M. El-Messiry, Alex. Eng. J. 55 (2016) 2975-2984. Crossref

(29). Y. Sailaukhanuly, A. Popova, T. Mansuret, et al., Eurasian Chem.-Technol. J. 24 (2022) 341‒350. Crossref

(30). A. Akhmetzhan, N. Abeu, S.N. Longinos, et al., Polymers 13 (2021) 3084. Crossref

(31). O. Yessimova, S. Kumargaliyeva, M. Kerimkulova, et al., Rasayan J. Chem. 13 (2020) 481-487. Crossref

(32). K. Abdiyev, S. Azat, E. Kuldeyev, et al., Water 15 (2023) 2007. Crossref

(33). N.V. Sidorova, M.A. Imanbayev, B. Khalkhabay, et al., J. Water Process Eng. 58 (2024) 104861. Crossref

Downloads

Published

2024-10-22

How to Cite

Ardakkyzy, A., Nuraje, N., & Toktarbay, Z. (2024). Effects of Electrospinning Parameters on the Morphology of Electrospun Fibers. Eurasian Chemico-Technological Journal, 26(3), 105–111. https://doi.org/10.18321/ectj1634

Issue

Section

Articles