Vapor-Liquid-Liquid Equilibrium of Methanol, Cyclohexane, and Hexane Systems at 0.1 MPa: Binary and Ternary Phase Behavior Analysis

Authors

  • Q.F. Gillani Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
  • P. Askar Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
  • A. Ospanova Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
  • M.A. Jamali Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Republic of Kazakhstan
  • N. Nuraje Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Republic of Kazakhstan; Renewable Energy Lab, National Laboratory Astana, Nazarbayev University, Astana, 010000, Republic of Kazakhstan

DOI:

https://doi.org/10.18321/ectj1645

Keywords:

Vapor-Liquid-Liquid Equilibrium (VLLE), Liquid-Liquid Equilibrium (LLE), Binary systems, Ternary systems, Methanol, Cyclohexane, n-hexane, Universal Quasi-Chemical (UNIQUAC), Non-Random Two-Liquid (NRTL), Phase behavior

Abstract

This study presents an evaluation of the liquid-liquid equilibria (LLE) for both binary and ternary systems involving methanol, cyclohexane, and n-hexane at a pressure of 1 MPa. The investigation encompasses a comprehensive analysis of phase behavior, including thermodynamic modeling, and graphical representations. The binary system of methanol and cyclohexane is examined extensively to understand their phase equilibrium at varying temperatures, with a focus on the T-xx diagram, activity coefficient calculations, and vapor-liquid equilibrium (VLE) analyses. Furthermore, the ternary system incorporating n-hexane alongside methanol and cyclohexane is investigated to explore the intricacies of multicomponent phase behavior. Through the utilization of thermodynamic models such as the Non-Random Two-Liquid (NRTL) model and Universal Quasi-Chemical (UNIQUAC) model, key insights into the phase compositions, distribution coefficients, azeotropes, and residue curves are elucidated. The findings from this study provide valuable insights into the thermodynamic interactions within these systems, offering essential guidance for process design and optimization in various industrial applications.

References

(1) P. Alessi, M. Fermeglia, I. Kikic, J. Chem. Eng. Data 34 (1989) 236–240. Crossref

(2) S. Li, X. Huang, Q. Huang, et al., Fluid Phase Equilib. 476 (2018) 103–111. Crossref

(3) M. Ionita, S. Sima, M. Cismondi, C. Secuianu, Rev. Roum. Chim. 66 (2021). Crossref

(4) B. Coto, R. Wiesenberg, C. Pando, et al., Berichte der Bunsengesellschaft für physikalische Chemie 100 (1996) 482–489. Crossref

(5) D.W. Green, R. H. Perry, “Perry’s Chemical Engineers’” Handbook, 8th Ed., 2008. ISBN:978-0-07-159313-7.

(6) H. Matsuda, K. Ochi, K. Kojima, J. Chem. Eng. Data 48 (2003) 184–189. Crossref

(7) L. Lepori, E. Matteoli, B. Marongiu, Fluid Phase Equilib. 42 (1988) 229–240. Crossref

(8) T. Yamaguchi, S. Chong, N. Yoshida, J. Chem. Phys. 158 (2023) 084502. Crossref

(9) T. Ishikawa, B.C.-Y. Lu, Fluid Phase Equilib. 3 (1979) 23–34. Crossref

(10) H. Binous, K. Mejbri, A. Bellagi, Comput. Appl. Eng. Educ. 29 (2021) 1589–1601. Crossref

(11) K. Kojima, H. Moon, K. Ochi, Fluid Phase Equilib. 56 (1990) 269–284. Crossref

(12) A. Gilani, J. Sardroodi, F. Verpoort, S. Rahmdel, J. Mol. Liq. 340 (2021) 117196. Crossref

(13) J. Cai, J. Zhang, W. Song, J. Chem. Eng. Data 60 (2015) 976–982. Crossref

(14) M. Li, Y. Yu, L. Zhang, J. Li, Y. Song, J. Solution Chem. 50 (2021) 1258–1284. Crossref

(15) I. Gascón, H. Artigas, P. Cea, et al., Phys. Chem. Liq. 41 (2003) 1–13. Crossref

(16) L. Zhang, Y. Yu, Z. Liao, et al., J. Chem. Eng. Data 65 (2020) 477–486. Crossref

(17) M. Góral, P. Oracz, S. Warycha, Fluid Phase Equilib. 135 (1997) 51–61. Crossref

(18) M.A. Jamali, A. Bissenbay, N. Nuraje, Eurasian Chem.-Technol J. 25 (2023) 183–192. Crossref

(19) P. Oracz, M. Góral, G. Wilczek-Vera, S. Warycha, Fluid Phase Equilib. 112 (1995) 291–306. Crossref

(20) G. Hradetzky, D. Lempe, Fluid Phase Equilib. 69 (1991) 285–301. Crossref

(21) H. Renon, J.M. Prausnitz, Ind. Eng. Chem. Process Des. Dev. 8 (1969) 413–419. Crossref

(22) T.F. Anderson, J.M. Prausnitz, Ind. Eng. Chem. Process Des. Dev., 17 (1978) 552–561. Crossref

(23) Z. Zhang, P. Jia, D. Huang, et al., J. Chem. Eng. Data 58 (2013) 3054–3060. Crossref

(24) J.-H. Oh, S.-J. Park, J. Chem. Eng. Data 50 (2005) 1564–1569. Crossref

(25) M. Rolemberg, M. Krähenbühl, J. Chem. Eng. Data 46 (2001) 256–260. Crossref

(26) C. Lindemann, P. Duchet-Suchaux, A. Razzouk, et al., J. Chem. Eng. Data 61 (2016) 2412–2418. Crossref

(27) Y. Tanaka, M. Kawakami, Fluid Phase Equilib. 125 (1996) 103–114. Crossref

(28) M. Domínguez, S. Martín, H. Artigas, et al., J. Chem. Eng. Data 47 (2002) 405–410. Crossref

(29) B. Khalfaoui, A. Meniai, R. Borja, Fluid Phase Equilib. 127 (1997) 181–190. Crossref

Downloads

Published

25-12-2024

How to Cite

Gillani, Q., Askar, P., Ospanova, A., Jamali, M., & Nuraje, N. (2024). Vapor-Liquid-Liquid Equilibrium of Methanol, Cyclohexane, and Hexane Systems at 0.1 MPa: Binary and Ternary Phase Behavior Analysis. Eurasian Chemico-Technological Journal, 26(4), 211–224. https://doi.org/10.18321/ectj1645

Issue

Section

Article