Formulating Superhydrophobic Coatings with Silane for Microfiber Applications

Authors

  • Zh. Suiindik Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, Kazakhstan
  • E. Adotey Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, Kazakhstan
  • N. Kydyrbay Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, Kazakhstan
  • M. Zhazitov Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, Kazakhstan
  • N. Nuraje Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, Kazakhstan
  • O. Toktarbaiuly Renewable Energy Laboratory, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1607

Keywords:

superhydrophobic coatings, microfiber surfaces, silica nanoparticles, polydimethylsiloxane, water contact angle, pH effects, textile applications

Abstract

This study investigates the development of superhydrophobic coatings on microfiber surfaces, with a specific focus on cotton, tweed, felt, and polyester fabrics. The resulting coatings demonstrated significant hydrophobicity, with water contact angles ranging from 128.5° for polyester to 148.9° for tweed. In addition, this investigation delves into the influence of pH levels on water contact angles, revealing notable fluctuations; specifically, higher pH levels resulted in decreased contact angles. The results indicated that the tweed fabric had the highest water contact angle at 151.7°, observed at a pH of 4. This study not only underscores the effective hydrophobic performance of these coatings but also highlights their practical applications. In particular, the research demonstrates the potential use of superhydrophobic coatings in the construction of traditional Kazakh ui (yurts), especially emphasizing the promising water repellency properties of felt fibers. Furthermore, this research illustrates a promising approach for producing superhydrophobic coatings on various microfiber surfaces, underlining their extensive potential applications within the textile industry. Overall, the findings suggest that the innovative use of superhydrophobic coatings can significantly enhance the water resistance of traditional and modern fabrics, paving the way for their broader application in various industries, including outdoor textiles and protective clothing.

References

(1). A. Kurbanova, N. Myrzakhmetova, N. Akimbayeva, K. Kishibayev, et al., Coatings 12 (2022) 1422. Crossref

(2). O. Toktarbaiuly, A. Kurbanova, G. Imekova, M. Abutalip, Zh. Toktarbay, Eurasian Chem.-Technol. J. 25 (2023) 193‒200. Crossref

(3). A. Seralin, G. Sugurbekova, A. Kurbanova, N. Nuraje, O. Toktarbaiuly, Eurasian Chem.-Technol. J. 24 (2022) 251‒258. Crossref

(4). M. Balaish, J. Jung, I. Kim, Y. Ein‐Eli, Adv. Funct. Mater. 30 (2019). Crossref

(5). A. Hooda, M.S. Goyat, J.K. Pandey, A. Kumar, R. Gupta, Prog. Org. Coat. 142 (2020) 105557. Crossref

(6). K. Manoharan, S. Bhattacharya, Journal of Micromanufacturing 2 (2019) 59‒78. Crossref

(7). M.J. Al-Kheetan, M.M. Rahman, D.A. Chamberlain, J. Mater. Civ. Eng. 31 (2019). Crossref v

(8). M.J. Al-Kheetan, M.M. Rahman, D.A. Chamberlain, Int. J. Build. Pathol. Adapt. 36 (2018) 77‒92. Crossref

(9). F.W. Al-Awabdeh, M.J. Al-Kheetan, Y.S. Jweihan, H. Al-Hamaiedeh, S.H. Ghaffar, Results Eng. 16 (2022) 100790. Crossref

(10). M.J. Al-Kheetan, J. Byzyka, S.H. Ghaffar, Sustainability 13 (2021) 4949. Crossref

(11). M.J. Al-Kheetan, M. Al-Tarawneh, S.H. Ghaffar, M. Chougan, et al., Struct. Concr. 22 (2021) E1050– E1061. Crossref

(12). H.Y. Erbil, Langmuir 36 (2020) 2493–2509. Crossref

(13). C. Yang, Q. Zeng, J. Huang, Z. Guo, Adv. Colloid Interface Sci. 306 (2022) 102724. Crossref

(14). M. He, Q. Zhang, X. Zeng, D. Cui, et al., Adv. Mater. 25 (2013) 2291–2295. Crossref

(15). Y. Hou, Z. Wang, J. Guo, H. Shen, et al., J. Mater. Chem. A 3 (2015) 23252–23260. Crossref

(16). Y. Li, S. Chen, M. Wu, J. Sun, Adv. Mater. 26 (2014) 3344–3348. Crossref

(17). F. Su, K. Yao, ACS Appl. Mater. Interfaces 6 (2014) 8762–8770. Crossref

(18). B. Bhushan, Philos. Trans. R. Soc. A 367 (2009) 1445–1486. Crossref

(19). L. Feng, S. Li, H. Li, J. Zhai, et al., Angew. Chem. Int. Ed. 41 (2002) 1221–1223. Crossref

(20). H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Science 283 (1999) 46. Crossref

(21). W. Chen, Y. Fadeev, M.C. Heieh, D. Oner, Jet al., Langmuir 15 (1999) 3395‒3399. Crossref

(22). A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater. 11 (1999) 1365. Crossref

(23). L. Amado, S. Mireia, B. Miren, V. Karmele, M. Antxon, Prog. Org. Coat. 150 (2021) 105968. Crossref

(24). Sri A. Kavitha, P. Deeksha, G. Deepika G. et. al., J. Ind. Eng. Chem. 92 (2020) 1–17. Crossref

(25). R. Kumar, A. Kumar Sahani, Mater. Today: Proc. 45 (2021) 5655–5659. Crossref

(26). X. Zhao, M. Abutalip, Kh. Afroz, N. Nuraje, Langmuir 35 (2019) 1606‒1612. Crossref

(27). Ch. Xue, Sh. Jia, J. Zhang, L. Tian, Thin Solid Films 517 (2009) 4593‒4598. Crossref

(28). Ch. Xue, M. Li, X. Guo, Q. An, Sh. Jia, Surf. Coat. Tech. 310 (2017) 134‒142. Crossref

(29). D. Aslanidou, I. Karapanagiotis, C. Panayiotou, Prog. Org. Coat. 97 (2016) 44‒52. Crossref

(30). N.A. Ivanova, A.B. Philipchenko, Appl. Surf. Sci. 263 (2012) 783‒787. Crossref

(31). M. Myrzabaeva, Z. Insepov, K.K. Boguspaev, D.G. Faleev, et al., Eurasian Chem.-Technol. J. 19 (2017) 91–98. Crossref

(32). Z.A. Mansurov, M. Nazhipkyzy, B.T. Lesbayev, N.G. Prikhodko, et al., Eurasian Chem.-Technol. J. 14 (2012) 19–23. Crossref

(33). B. Deng, R. Cai, Y. Yu, H. Jiang, et al., Adv. Mater. 22 (2010) 5473–5477. Crossref

(34). Ch. Xue, Sh. Jia, J. Zhang, L. Tian, et al., Sci. Technol. Adv. Mater. 9 (2008) 035008. Crossref

(35). M.Sh. Khalil-Abad, M.E. Yazdanshenas, J. Colloid Interface Sci. 351 (2010) 293–298. Crossref

(36). X. Zhou, Zh. Zhang, X. Xu, F. Guo, et al., ACS Appl. Mater. Interfaces 5 (2013) 7208–7214. Crossref

(37). GfG (2024) Types of fabric-different kinds of natural & synthetic fibres, GeeksforGeeks. Available at: https://www.geeksforgeeks.org/types-of-fabric/ (Accessed: 15 March 2024).

(38). Y.Y. Lichman, T.M. Doroschenko, European Journal of Science and Theology 12 (2016) 221–232.

(39). E.V. Chenchulaeva, I.V. Kulikova, Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Journal of Construction and Architecture] 24 (2022) 39–50. (In Russ.) Crossref

(40). S.C. Eluu, J.D. Obayemi, A.A. Salifu, D. Yiporo, et al., Sci. Rep. 14 (2024) 31. Crossref

(41). P. Ezati, J.-W. Rhim, M. Moradi, H. Tajik,R. Molaei, Carbohydr. Polym. 246 (2020). Crossref

(42). Y. Chen, J. Li, Y. Hong, W. He, et al., J. Mater. Sci.: Mater. Electron. 34 (2023) 1600. Crossref

(43). M. Baibarac, A. Nila, I. Smaranda, M. Stroe, et al., Materials 14 (2021) 753. Crossref

(44). K. Oyedeko, O. Akinyemi, O. Ogunyemi, S.A. Olaleru, et al., J. Appl. Res. Technol. 21 (2023) 945‒951. Crossref

(45). M. Aurilio, H. Baaj. Examining the Effects of a Self-healing Elastomer on the Properties of Bitumen. In book: Proceedings of the RILEM International Symposium on Bituminous Materials, 2022. Crossref

(46). M.K. Trivedi, R.M. Tallapragada, A. Branton, D. Trivedi, et al., J. Fundam. Renewable Energy Appl. 5 (2015). Crossref

(47). S. Abdulgafar, Y. Hassan, M. Ibrahem, J. Mater. Sci.: Mater. Electron. 34 (2023) 979. Crossref

(48). M. Nueraji, Z. Toktarbay, A. Ardakkyzy, D. Sridhar, et al., Environ. Res. 220 (2023) 115212. Crossref

Downloads

Published

2024-06-27

How to Cite

Suiindik, Z., Adotey, E., Kydyrbay, N., Zhazitov, M., Nuraje, N., & Toktarbaiuly, O. (2024). Formulating Superhydrophobic Coatings with Silane for Microfiber Applications . Eurasian Chemico-Technological Journal, 26(2), 53–60. https://doi.org/10.18321/ectj1607

Issue

Section

Articles