Dispersion of Polyethylene Glycol in Perfluorodecalin for Liquid Phase Fluorination

Authors

  • A.A. Andreev National Research Tomsk Polytechnic University, 30, ave. Lenina, Tomsk, Russia
  • N.A. Belov National Research Tomsk Polytechnic University, 30, ave. Lenina, Tomsk, Russia; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29, Leninsky ave., Moscow, Russia
  • V.V. Makarova A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29, Leninsky ave., Moscow, Russia
  • G.A. Shandryuk A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29, Leninsky ave., Moscow, Russia
  • D.V. Bryankin National Research Tomsk Polytechnic University, 30, ave. Lenina, Tomsk, Russia
  • D.S. Pashkevich National Research Tomsk Polytechnic University, 30, ave. Lenina, Tomsk, Russia; Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya, Str. Petersburg, Russia
  • A.Yu. Alentiev National Research Tomsk Polytechnic University, 30, ave. Lenina, Tomsk, Russia; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29, Leninsky ave., Moscow, Russia

DOI:

https://doi.org/10.18321/ectj1439

Keywords:

Polyethylene glycol, Perfluorodecalin, Liquid-liquid systems, Ultrasonic emulsification, Bubbling, Coagulation, Breakage

Abstract

This work aims to obtain the dispersions based on polyethylene glycols (PEGs) of various molecular masses (MM) and perfluorodecalin (PFD) for subsequent direct fluorination. The solubility of the components was estimated using laser interferometry and differential scanning calorimetry, and it was shown that PEGs with different MM are not highly compatible with PFD. The dispersions were prepared during sonication. Gel permeation chromatography (GPC) analysis indicated that MMs almost did not change in this process. While the sonication of PEG-PFD, there is a formation of dispersion with the particle sizes distribution in a range of 0.4‒2 μm depending on the MM of PEG. The dispersion is metastable for several hours, even though its stability was significantly affected by additional bubbling with the gas flow. Moreover, the dispersions with a solid PEG phase (MM > 600 Da) were subjected to a smaller change compared to a liquid one (MM < 600 Da). The results of this research shed light on the applicability of the ultrasonic preparation of PEGs in PFD for liquid-phase fluorination with obtaining perfluorinated polyether of target MM.

References

(1). Z. Hu, J.A. Finlay, L. Chen, D.E. Betts, et al., Macromolecules 42 (2009) 6999–7007. Crossref

(2). F. Martini, R. Biancardi, E. Barchiesi, S. Borsacchi, et al., J. Fluorine Chem. 192 (2016) 22–26. Crossref

(3). K. Johns, C. Corti, L. Montagna, P. Srinivasan, J. Phys. D Appl. Phys. 25 (1992) A141–A146. Crossref

(4). G. Marchionni, M. Avataneo, U. De Patto, P. Maccone, et al., J. Fluorine Chem. 126 (2005) 463–471. Crossref

(5). G. Marchionni, P. Maccone, G. Pezzin, J. Fluorine Chem. 118 (2002) 149–155. Crossref

(6). G. Marchionni, S. Petricci, P.A. Guarda, G. Spataro, et al., J. Fluorine Chem. 125 (2004) 1081–1086. Crossref

(7). T. Kałdoński, P.P. Wojdyna, J. KONES Powertrain Transp. 18 (2011) 163–184.

(8). L.P. Viegas, J. Phys. Chem. A 125 (2021) 4499–4512. Crossref

(9). L.P. Viegas, J. Phys. Chem. A 122 (2018) 9721–9732. Crossref

(10). G. Marchionni, P.A. Guarda, U.S. Patent, Process for preparing peroxidic perfluoropolyoxyal-kylenes. Patent number 5744651. Date of Patent Apr. 28, 1998.

(11). G. Marchionni, M. Visca, European Patent Application, Perfluoropolyethers (PFPEs) having at least an alkylether end group and respective preparation process, EP 1275678A2, January 15, 2003

(12). M.P. Sulbaek Andersen, M.D. Hurley, T.J. Wallington, F. Blandini, et al., J. Phys. Chem. A 108 (2004) 1964–1972. Crossref

(13). W. Navarrini, M. Galimberti, G. Fontana, U.S. Patent, Process for preparing hydrofluoroethers. Patent No.: 7141704B2, Date of Patent: 28 Nov. 28, 2006.

(14). M. Wu, W. Navarrini, M. Avataneo, F. Venturini, M. Sansotera, M. Gola, Chemistry Today 29 (2011) 67–71.

(15). M. Wu, W. Navarrini, G. Spataro, F. Venturini, et al., Appl. Sci. 2 (2012) 351–367. Crossref

(16). L.P. Viegas, Int. J. Chem. Kinet. 51 (2019) 358–366. Crossref

(17). L.P. Viegas, Theor. Chem. Acc. 138 (2019) 65. Crossref

(18). J.A.C. Allison, G.H. Cady, J. Am. Chem. Soc. 81 (1959) 1089–1091. Crossref

(19). A.P. Kharitonov, G.V. Simbirtseva, V.M. Bouznik, M.G. Chepezubov, et al., J. Polym. Sci. Pol. Chem. 49 (2011) 3559–3573. Crossref

(20). A.P. Kharitonov, L.N. Kharitonova, Pure Appl. Chem. 81 (2009) 451–471. Crossref

(21). A.P. Kharitonov, Prog. Org. Coat. 61 (2008) 192–204. Crossref

(22). T. Okazoe, J. Fluorine Chem. 174 (2015) 120–131. Crossref

(23). N.A. Belov, A.Y. Alentiev, Y.G. Bogdanova, A.Y. Vdovichenko, et al., Polymers 12 (2020) 28–36. Crossref

(24). T.R. Bierschenk, T.J. Juhlke, H. Kawa, R.J. Lagow, U.S. Patent, Liquid-phase fluorination. Patent number 5753776A, Data of patent: May 19, 1998.

(25). R.L. Powell, J.H. Steven, CFCs and the Environment: Further Observations, in: R.E. Banks, B.E. Smart, J.C. Tatlow (Eds.), Organofluorine Chemistry, Springer US, Boston, MA, 1994. P. 617–629. Crossref

(26). M.B. Blanco, C. Rivela, M.A. Teruel, Chem. Phys. Lett. 578 (2013) 33–37. Crossref

(27). A. Mellouki, T.J. Wallington, J. Chen, Chem. Rev. 115 (2015) 3984–4014. Crossref

(28). I.A. Blinov, D.A. Mukhortov, Y.P. Yampolskii, N.A. Belov, et al., J. Fluorine Chem. 234 (2020) 109526. Crossref

(29). N.A. Belov, I.A. Blinov, A.Yu. Alentiev, V.M. Belokhvostov, et al., J. Polym. Res. 27 (2020) 290. Crossref

(30). I.A. Blinov, N.A. Belov, A.V. Suvorov, S.V. Chirkov, et al., J. Fluorine Chem. 246 (2021) 109777. Crossref

(31). V. Makarova, V. Kulichikhi, Application of Interferometry to Analysis of Polymer- Polymer and Polymer-Solvent Interactions, in: I. Padron (Ed.), Interferometry - Research and Applications in Science and Technology, InTech, 2012. Crossref

(32). A.E. Chalykh, U.V. Nikulova, A.A. Shcherbina, E.V. Chernikova, Polym. Sci. Ser. A 61 (2019) 175–185. Crossref

(33). H. Kawasaki, Y. Takeda, R. Arakawa, Anal. Chem. 79 (2007) 4182–4187. Crossref

(34). G. Madras, V. Karmore, Polym. Int. 50 (2001) 683–687. Crossref

Downloads

Published

2022-10-10

How to Cite

Andreev, A., Belov, N., Makarova, V., Shandryuk, G., Bryankin, D., Pashkevich, D., & Alentiev, A. (2022). Dispersion of Polyethylene Glycol in Perfluorodecalin for Liquid Phase Fluorination. Eurasian Chemico-Technological Journal, 24(3), 259–265. https://doi.org/10.18321/ectj1439

Issue

Section

Articles

Most read articles by the same author(s)