A Comprehensive Approach to Investigating Fluorine-Bearing Gas Mixtures
DOI:
https://doi.org/10.18321/ectj1472Keywords:
Fluorine, Fluorine analysis, Anodic gas, Gas chromatographyAbstract
An integrated method is proposed for examining the compositions of fluorine-bearing gaseous mixtures, which allows for determining the concentration of HF, F2, N2, O2, CO2, CF4, and C2F6 in these mixtures. The concentration of hydrogen fluoride is determined by its sorption on sodium fluoride followed by the determination of the fluoride ion by the potentiometric method. The lower threshold of determination of hydrogen fluoride is found to be 0.09 vol.%. The concentrations of N2, O2, CO2, CF4, and C2F6 are determined by the gas chromatographic method using a thermal conductivity detector. The proposed gas-chromatography method offers a quantitative measurement of the concentration of N2, O2, CO2, CF4, and C2F6 at the lower limits of detection of 0.008, 0.012, 0.011, 0.009, and 0.019 vol.%, respectively. Based on the developed method, the compositions of a standard fluorine-nitrogen (10 vol.%) and anodic gas samples, synthesized in a laboratory electrolyzer at the National Research Tomsk Polytechnic University and in an industrial electrochemical reactor at JSC Siberian Chemical Plant (Russia), are studied.
References
(1). B. Morel, A. Selmi, L. Moch, J.-M. Hiltbrunner, et al., Comptes. Rendus. Chimie 21 (2018) 782‒790. Crossref
(2). D.S. Pashkevich, D.A. Mukhortov, V.B. Petrov, Yu.I. Alekseev, et al., Russ. J. Appl. Chem. 77 (2004) 92‒97. Crossref
(3). I.V. Nikitin, V.Ya. Rosolovskii, Russ. Chem. Rev. 39 (1970) 545‒552. Crossref
(4). D.S. Pashkevich, V.G. Barabanov, B.N. Maksimov Development of industrial processes for production of fluorocompounds using elemental fluorine and their introduction into practice in: “A tribute to B.N. Gidaspov. Scientific readings”, Teza, St, Petersburg, 2008. P. 169‒177 (in Russian).
(5). J.-C. Agopian, O. Téraube, K. Charlet, M. Dubois, J. Fluor. Chem. 251 (2021) 109887. Crossref
(6). M. Adamska, U. Narkiewicz, J. Fluor. Chem. 200 (2017) 179‒189. Crossref
(7). Yifan Liu, Lingyan Jiang, Haonan Wang, Hong Wang, et al., Nanotechnol. Rev. 8 (2019) 573‒586. DOI: Crossref
(8). I.A. Blinov, N.A. Belov, A.V. Suvorov, S.V. Chirkov, et al., J. Fluor. Chem. 246 (2021) 109777. Crossref
(9). N.A. Belov, A.Y. Alentiev, Y.G. Bogdanova, A.Y. Vdovichenko, D.S. Pashkevich, Polymers 12 (2020) 2836. Crossref
(10). G. Sandford, J. Fluor. Chem. 128 (2007) 90‒104. Crossref
(11). N.L. Glinka, General chemistry. M.: Integral- Press, 2000. P. 482. (in Russian)
(12). Yu.P. Damm, O.G. Zheronkina, K.V. Kholina, V.L. Sofronov, A.A. Galata, Raw material base and prospects of fluorine production in Russia. Izvestiya Vyschikh Uchebnykh Zavedenii, Fizika 56 (2013) 114‒123. (in Russian)
(13). O.B. Gromov, D.V. Utrobin, A.V. Ananyev, P.I. Mikheev, et. al., Technological aspects of obtaining and cleaning elemental fluorine. Himicheskaja promyshlenost’ [Chemical industry] 96 (2019) 67‒78. (in Russian)
(14). GOST 14022-88. Hydrogen fluoride anhydrous. Specification. URL
(15). D.A. Mukhortov, I.A. Blinov, E.S. Kurapova, P.S. Kambur, Russ. J. Appl. Chem. 83 (2010) 31‒35. Crossref
(16). D. Basting, G. Marowsky, Excimer Laser Technology. Berlin: Springer, 2005. P. 221‒277. Crossref
(17). A.P. Kharitonov, Prog. Org. Coat. 61 (2008) 192-204. Crossref
(18). N.P. Kurin, V.A. Krasilnikov, T.I. Guzeeva, Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering 305 (2002) 282‒290.
(19). N.P. Galkin, V.A. Zaitsev, M.B. Seregin, Collection and recovery of fluorine-bearing gases. Moscow: Atomizdat, 1975. P. 60. (in Russian)
(20). V.S. Akishin, V.V. Lazarchuk, E.P. Marinenko, A.A. Matveev, A.I. Rudnikov, Peculiarities of sorption processes in the production of hexafluoride of highly enriched uranium. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering 305 (2002) 132‒139. (in Russian)
(21). Ministry of Health of the Russian Federation. General pharmacopoeial article. ОФС 1.2.3.0001.15 Determination of fluorine. URL
(22). GOST 25699.3-90. Rubber compounding ingredients. Carbon black. Determination of iodine adsorption number. Titrimetric method. URL
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eurasian Chemico-Technological Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.