A Comprehensive Approach to Investigating Fluorine-Bearing Gas Mixtures

Authors

  • A.A. Andreev National Research Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia
  • D.S. Pashkevich National Research Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia; Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya, St. Petersburg, Russia
  • D.V. Bryankin National Research Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia
  • N.A. Belov National Research Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr., 29, Moscow, Russia
  • P.S. Kambur National Research Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia
  • V.V. Kapustin National Research Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia
  • S.P. Zhuravkov National Research Tomsk Polytechnic University, pr. Lenina, 30, Tomsk, Russia

DOI:

https://doi.org/10.18321/ectj1472

Keywords:

Fluorine, Fluorine analysis, Anodic gas, Gas chromatography

Abstract

An integrated method is proposed for examining the compositions of fluorine-bearing gaseous mixtures, which allows for determining the concentration of HF, F2, N2, O2, CO2, CF4, and C2F6 in these mixtures. The concentration of hydrogen fluoride is determined by its sorption on sodium fluoride followed by the determination of the fluoride ion by the potentiometric method. The lower threshold of determination of hydrogen fluoride is found to be 0.09 vol.%. The concentrations of N2, O2, CO2, CF4, and C2F6 are determined by the gas chromatographic method using a thermal conductivity detector. The proposed gas-chromatography method offers a quantitative measurement of the concentration of N2, O2, CO2, CF4, and C2F6 at the lower limits of detection of 0.008, 0.012, 0.011, 0.009, and 0.019 vol.%, respectively. Based on the developed method, the compositions of a standard fluorine-nitrogen (10 vol.%) and anodic gas samples, synthesized in a laboratory electrolyzer at the National Research Tomsk Polytechnic University and in an industrial electrochemical reactor at JSC Siberian Chemical Plant (Russia), are studied.

References

(1). B. Morel, A. Selmi, L. Moch, J.-M. Hiltbrunner, et al., Comptes. Rendus. Chimie 21 (2018) 782‒790. Crossref

(2). D.S. Pashkevich, D.A. Mukhortov, V.B. Petrov, Yu.I. Alekseev, et al., Russ. J. Appl. Chem. 77 (2004) 92‒97. Crossref

(3). I.V. Nikitin, V.Ya. Rosolovskii, Russ. Chem. Rev. 39 (1970) 545‒552. Crossref

(4). D.S. Pashkevich, V.G. Barabanov, B.N. Maksimov Development of industrial processes for production of fluorocompounds using elemental fluorine and their introduction into practice in: “A tribute to B.N. Gidaspov. Scientific readings”, Teza, St, Petersburg, 2008. P. 169‒177 (in Russian).

(5). J.-C. Agopian, O. Téraube, K. Charlet, M. Dubois, J. Fluor. Chem. 251 (2021) 109887. Crossref

(6). M. Adamska, U. Narkiewicz, J. Fluor. Chem. 200 (2017) 179‒189. Crossref

(7). Yifan Liu, Lingyan Jiang, Haonan Wang, Hong Wang, et al., Nanotechnol. Rev. 8 (2019) 573‒586. DOI: Crossref

(8). I.A. Blinov, N.A. Belov, A.V. Suvorov, S.V. Chirkov, et al., J. Fluor. Chem. 246 (2021) 109777. Crossref

(9). N.A. Belov, A.Y. Alentiev, Y.G. Bogdanova, A.Y. Vdovichenko, D.S. Pashkevich, Polymers 12 (2020) 2836. Crossref

(10). G. Sandford, J. Fluor. Chem. 128 (2007) 90‒104. Crossref

(11). N.L. Glinka, General chemistry. M.: Integral- Press, 2000. P. 482. (in Russian)

(12). Yu.P. Damm, O.G. Zheronkina, K.V. Kholina, V.L. Sofronov, A.A. Galata, Raw material base and prospects of fluorine production in Russia. Izvestiya Vyschikh Uchebnykh Zavedenii, Fizika 56 (2013) 114‒123. (in Russian)

(13). O.B. Gromov, D.V. Utrobin, A.V. Ananyev, P.I. Mikheev, et. al., Technological aspects of obtaining and cleaning elemental fluorine. Himicheskaja promyshlenost’ [Chemical industry] 96 (2019) 67‒78. (in Russian)

(14). GOST 14022-88. Hydrogen fluoride anhydrous. Specification. URL

(15). D.A. Mukhortov, I.A. Blinov, E.S. Kurapova, P.S. Kambur, Russ. J. Appl. Chem. 83 (2010) 31‒35. Crossref

(16). D. Basting, G. Marowsky, Excimer Laser Technology. Berlin: Springer, 2005. P. 221‒277. Crossref

(17). A.P. Kharitonov, Prog. Org. Coat. 61 (2008) 192-204. Crossref

(18). N.P. Kurin, V.A. Krasilnikov, T.I. Guzeeva, Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering 305 (2002) 282‒290.

(19). N.P. Galkin, V.A. Zaitsev, M.B. Seregin, Collection and recovery of fluorine-bearing gases. Moscow: Atomizdat, 1975. P. 60. (in Russian)

(20). V.S. Akishin, V.V. Lazarchuk, E.P. Marinenko, A.A. Matveev, A.I. Rudnikov, Peculiarities of sorption processes in the production of hexafluoride of highly enriched uranium. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering 305 (2002) 132‒139. (in Russian)

(21). Ministry of Health of the Russian Federation. General pharmacopoeial article. ОФС 1.2.3.0001.15 Determination of fluorine. URL

(22). GOST 25699.3-90. Rubber compounding ingredients. Carbon black. Determination of iodine adsorption number. Titrimetric method. URL

Downloads

Published

2022-12-12

How to Cite

Andreev, A., Pashkevich, D., Bryankin, D., Belov, N., Kambur, P., Kapustin, V., & Zhuravkov, S. (2022). A Comprehensive Approach to Investigating Fluorine-Bearing Gas Mixtures. Eurasian Chemico-Technological Journal, 24(4), 287‒294. https://doi.org/10.18321/ectj1472

Issue

Section

Articles

Most read articles by the same author(s)