Encapsulation of Insulin in Biodegradable Polymers
DOI:
https://doi.org/10.18321/ectj1479Keywords:
Diabetes mellitus, Insulin, Crosslinking agent, Ionotropic gelation method, EncapsulationAbstract
Encapsulation of insulin into alginate particles was carried out by the method of ionotropic gelation. To protect against the acidic, alkaline environment of the gastrointestinal tract, alginate particles were coated with gelatin. The optimal concentration of the solution of the crosslinking agent ‒ CaCl2 was determined during the optimization of the particle preparation method. The mechanism of interaction between alginate and gelatin was investigated using FTIR spectroscopy, FTIR spectra data confirm the formation of a polyelectrolyte complex between alginate an-d gelatin. The roughness and morphology of samples were determined by atomic force microscopy. The swelling of particles under simulated pH conditions of various parts of the human gastrointestinal tract was studied. The release of insulin from the particles was evaluated using UV spectroscopy, at pH 6.86; 9.18 the release of insulin reached 50%; 83% relatively.
References
(1). S. Wild, G. Roglic, A. Green, R. Sicree, et al., Diabetes Care 27 (2004) 1047–1053. Crossref
(2). International Diabetes Federation. Diabetes Atlas 2021. 10th Edition.
(3). E.P. Herrero, M.J. Alonso, N. Csaba, Ther. Deliv. 3 (2012) 657–668. Crossref
(4). V.R. Babu, P. Patel, R.C. Mundargi, V. Rangaswamy, et al., Expert Opin. Drug Deliv. 5 (2008) 403–415. Crossref
(5). A. Zambanini, R.B. Newson, M. Maisey, M.D. Feher, Diabetes Res. Clin. Pract. 46 (1999) 239– 246. Crossref
(6). E. Arbit, Diabetes Technol. Ther. 6 (2004) 510– 517. Crossref
(7). G. Coppi, V. Iannuccelli, E. Leo, M.T. Bernabei, et al., Drug Dev. Ind. Pharm. 27 (2001) 393– 400. Crossref
(8). K. Nakamura, R.J. Murray, J.I. Joseph, N.A. Peppas, et al., J. Control. Release 95 (2004) 589–599. Crossref
(9). C. Pinto Reis, R.J. Neufeld, A.J. Ribeiro, F. Veiga, Nanomed.: Nanotechnol. Biol. Med. 2 (2006) 53–65. Crossref
(10). E. Muntoni, E. Marini, N. Ahmadi, P. Milla, et al., Acta Diabetol 56 (2019) 1283–1292. Crossref
(11). V. Raguraman, M.A. Jayasri, K. Suthindhiran, J. Mater. Sci. Mater. Med. 31 (2020) 75. Crossref
(12). Y. Zhang, J. Li, Z. Wang, M.Z. Xu, et al., Chem. Eng. J. 390 (2020) 124630. Crossref
(13). X. Han, Y. Lu, J. Xie, E. Zhang, et al., Nat. Nanotechnol. 15 (2020) 605–614. Crossref
(14). J.R. Jorgensen, M.L. Jepsen, L.H. Nielsen, M. Dufva, et al., Eur. J. Pharm. Biopharm. 143 (2019) 98–105. Crossref
(15). Z. Ma, T.M. Lim, L.Y. Lim, Int. J. Pharm. 293 (2005) 271–280. Crossref
(16). Y. Tabata, Y. Ikada, Adv. Drug Deliv. Rev. 31 (1998) 287–301. Crossref
(17). M. George, T.E. Abraham, J. Control. Release 114 (2006) 1–14. Crossref
(18). A. Bernkop-Schnurch, C.E. Kast, M.F. Richter, J. Control. Release 71 (2001) 277–285. Crossref
(19). S.C. Chen, Y.C. Wu, F.L. Mi, Y.H. Lin, et al., J. Control. Release 96 (2004) 285–300. Crossref
(20). M.C. Chen, F.L. Mi, Z.X. Liao, C.W. Hsiao, et al., Adv. Drug Deliv. Rev. 65 (2013) 865–879. Crossref
(21). E.I. Rabea, M.E.T. Badawy, C.V. Stevens, G. Smagghe, et al., Biomacromolecules 4 (2003) 1457–1465. Crossref
(22). M.A. Mumuni, F.C. Kenechukwu, K.C. Ofokansi, A.A. Attama, et al., Carbohydr. Polym. 229 (2020) 115506. Crossref
(23). S. Sajeesh, C. Vauthier, C. Gueutin, G. Ponchel, et al., Acta Biomater. 6 (2010) 3072–3080. Crossref
(24). X. Zhu, M. Su, S. Tang, L. Wang, et al., Mol. Vis. 18 (2012) 1973–82. PMCID: PMC3413446
(25). R. Esquivel, J. Juarez, M. Almada, J. Ibarra, et al., Int. J. Polym. Sci. 2015 (2015) 1–18. Crossref
(26). I.A. Sogias, V.V. Khutoryanskiy, A.C. Williams, Macromol. Chem. Phys. 211 (2010) 426–433. Crossref
(27). Y. Jeong, D.G. Kim, M.K. Jang, J.W. Nah, Carbohydr. Res. 343 (2008) 282–289. Crossref
(28). M.L. Lorenzo-Lamosa, C. Remunan-Lopez, J.L. Vila-Jato, M.J. Alonso, J. Control. Release 52 (1998) 109–118. Crossref
(29). S-B. Park, E. Lih, K.S. Park, Y.K. Joung, et al., Prog. Polym. Sci. 68 (2017) 77–105. Crossref
(30). I. Kaur, B. Nallamothu, K. Kuche, S.S. Katiyar, et al., Int. J. Biol. Macromol. 167 (2021) 491– 501. Crossref
(31). L. Tu, Y. He, H. Yang, Z. Wu, et al., J. Biomater. Sci. Polym. Ed. 26 (2015) 735–749. Crossref
(32). L. Loan Khanh, N. Thanh Truc, N. Tan Dat, N. Thi Phuong Nghi, et al., Sci. Technol. Adv. Mater. 20 (2019) 276–290. Crossref
(33). R.S. Samakradhamrongthai, P. Thakeow Angeli, P. Kopermsub, N. Utama-ang, Carbohydr. Polym. 226 (2019) 115262. Crossref
(34). J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, et al., Biomaterials 31 (2010) 5536–5544. Crossref
(35). S. Tazhibayeva, B. Tyussyupova, A. Yermagambetova, A. Kokanbayev, et al., East. Eur. J. Enterp. Technol. 5 (2020) 40–48. Crossref
(36). T.Y. Lu, K.F. Yu, S.H. Kuo, N.C. Cheng, et al., Polymers 12 (2020) 2997. Crossref
(37). V.X. Truong, K.M. Tsang, G.P. Simon, R.L. Boyd, et al., Biomacromolecules 16 (2015) 2246–2253. Crossref
(38). H. Wang, O.C. Boerman, K. Sariibrahimoglu, Y. Li, et al., Biomaterials 33 (2012) 8695–8703. Crossref
(39). Z. Zhou, S. He, T. Huang, C. Peng, et al., Polym. Bull. 72 (2015) 713–723. Crossref
(40). H.E. Thu, S.F. Ng, Int. J. Pharm. 454 (2013) 99–106. Crossref
(41). D.A. Rees, E.J. Welsh, Angew. Chem. Int. Ed. Engl. 16 (1977) 214–224. Crossref
(42). M.M. Daly, D. Knorr, Biotechnol. Prog. 4 (1988) 76–81. Crossref
(43). K. Chong-Kook, N.U. Seoul, L. Eun-Jin, Int. J. Pharm. 79 (1992) 11–19. Crossref
(44). S. Takka, O.H. Ocak, F. Acarturk, Eur. J. Pharm. Sci. 6 (1998) 241–246. Crossref
(45). L.S. Shenouda, K.A. Adams, M.A. Zoglio, Int. J. Pharm. 61 (1990) 127–134. Crossref
(46). A. Akhmetzhan, N. Abeu, S. Nik. Longinos, A. Tashenov, et al., Polymers 13 (2021) 3084. Crossref
(47). J. Landsgesell, C. Holm, Macromolecules 52 (2019) 9341–9353. Crossref
(48). D.W. Yin, F. Horkay, J.F. Douglas, J.J. De Pablo, J. Chem. Phys. 129 (2008). Crossref
(49). E.A. Kirzhanova, M.A. Pechenkin, N.B. Demina, N.G. Balabushevich, Moscow Univ. Chem. Bull. 71 (2016) 127–133. Crossref
(50). S. Zhou, X. Deng, X. Li, J. Control. Release 75 (2001) 27–36. Crossref
(51). M. Ramadas, W. Paul, K.J. Dileep, Y. Anitha, et al., J. Microencapsul. 17 (2000) 405–411. Crossref
(52). G.W. Vandenberg, J. De La Noue, J. Microencapsul. 18 (2001) 433–441. Crossref
(53). A.I. Bourbon, A.C. Pinheiro, M.A. Cerqueira, A.A. Vicente, Food Hydrocoll. 60 (2016) 109– 118. Crossref
(54). A. Elsayed, M. Al-Remawi, A. Farouk, A. Badwan, Sudan JMS 5 (2010) 99–109. Crossref
(55). L.Y. Wang, G.H. Ma, Z.G. Su, J. Control. Release 106 (2005) 62–75. Crossref
(56). Z.I. Al-Kurdi, B.Z. Chowdhry, S.A. Leharne, M.M.H. Al Omari, et al., Mar. Drugs 13 (2015) 1765–1784. Crossref
(57). M.N.V. Ravi Kumar, React. Funct. Polym. 46 (2000) 1–27. Crossref
(58). I. Wedmore, J.G. McManus, A.E. Pusateri, J.B. Holcomb, J. Trauma 60 (2006) 655–658. Crossref
(59). S. Richardson, H.V.J. Kolbe, R. Duncan, Int. J. Pharm. 178 (1999) 231–243. Crossref
(60). K.I. Draget, G. Skjak Bræk, O. Smidsrod, Carbohydr. Polym. 25 (1994) 31–38. Crossref
(61). M.T. Cook, G. Tzortzis, D. Charalampopoulos, V.V. Khutoryanskiy, Biomacromolecules 12 (2011) 2834–2840. Crossref
(62). Y. Fu, W.J. Kao, Expert Opin. Drug Deliv. 7 (2010) 429–444. Crossref
(63). D. Vehlow, R. Schmidt, A. Gebert, M. Siebert, et al., Nanomaterials 6 (2016) 53. Crossref
(64). W. Feng, W. Nie, C. He, X. Zhou, et al., ACS Appl. Mater. Interfaces 6 (2014) 8447–8460. Crossref
(65). K.A. Black, D. Priftis, S.L. Perry, J. Yip, et al., ACS Macro Lett. 3 (2014) 1088–1091. Crossref
(66). K. Itaka, K. Yamauchi, A. Harada, K. Nakamura, et al., Biomaterials 24 (2003) 4495–4506. Crossref
(67). E.S. Dragan, M.V. Dinu, Carbohydr. Polym. 225 (2019). Crossref
(68). D. Bajas, G. Vlase, M. Mateescu, O.A. Grad, et al., Polymers 13 (2021) 161. Crossref
(69). H. Daemi, M. Barikani, Sci. Iran. 19 (2012) 2023–2028. Crossref
(70). P. Sundarrajan, P. Eswaran, A. Marimuthu, L.B. Subhadra, et al., Bull. Korean Chem. Soc. 33 (2012) 3218–3224. Crossref
(71). D.M. Hashim, Y.B.C. Man, R. Norakasha, M. Shuhaimi, et al., Food Chem. 118 (2010) 856– 860. Crossref
(72). J. Bandekar, Biochim. Biophys. Acta Proteom. 1120 (1992) 123–143. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.