Synthesis of Magnetic Composite Based on Vermiculite

Authors

  • G. Kurmangazhi Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • S.M. Tazhibayeva Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • Haoran Zhang Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • K.B. Musabekov Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan
  • Z.A. Tattibayeva Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1646

Keywords:

Vermiculite, Magnetite, Composite, Methylene blue, Adsorption, Clay, Interlayer space

Abstract

The aim of the study was to synthesize a magnetic composite based on vermiculite and to evaluate its physicochemical properties and adsorption capacity. An increase in the content of Fe (III) in the composition of clay and the inversion for the sign of the charge of vermiculite particles accompanies the formation of the composite. Introducing magnetite particles into the vermiculite structure is substantiated by the appearance of its diffractogram of 2θ angle values characteristic of magnetite. On the FTIR spectrum of clay after the synthesis of magnetite a new absorption band appears at a vibrational frequency of 1404 cm–1, attributed to the Fe–O bond of magnetite, and the position of peaks in the interval 797–602 cm–1. The adsorption capacity of the vermiculite-magnetite composite was evaluated by the adsorption of methylene blue on it. Processing of adsorption data according to Langmuir and Freundlich showed that the maximum adsorption of methylene blue on the surface of vermiculite-magnetite composite is 113.64 mg/g. The constant 1/n has a value less than 1.0, showing the high affinity of dye molecules to the composite surface. These results show that vermiculite-magnetite composite has a significant potential for use as a sorbent in the treatment of wastewater from oil, organic pollutants, as well as carriers of drugs.

References

(1) S. Sharma, A. Verma, A. Kumar, H. Kamyab, Nano Hybrids Compos. 20 (2018) 149–172. Crossref

(2) K.B. Debs, D.S. Cardona, H.D.T. da Silva, et al., J. Environ. Manage. 230 (2019) 405–412. Crossref

(3) D.S. Cardona, K.B. Debs, S.G. Lemos, et al., J. Environ. Manage. 242 (2019) 362–371. Crossref

(4) T.A. Dontsova, E.I. Yanushevskaya, S.V. Nahirniak, et at., J. Nanomater. 1 (2018). Crossref

(5) L. Chen, C.H. Zhou, S. Fiore, et al., Appl. Clay Sci. 127–128 (2016) 143–163. Crossref

(6) J. Govan, Magnetochemistry 6 (2020) 49. Crossref

(7) M. Li, Y. Zhao, Z. Ai, et al., Chem. Phys. 550 (2021) 111313. Crossref

(8) A.M. Rashad, Constr. Build. Mater. 125 (2016) 53–62. Crossref

(9) S. Liu, P. Wu, M. Chen, et al., Environ. Pollut. 228 (2017) 277–286. Crossref

(10) R. Novikau, G. Lujaniene, J. Environ. Manage. 309 (2022) 114685 Crossref

(11) L.F.A. Batista, P.S. de Mira, R.J.B. De Presbiteris, et al., Chem. Pap. 75 (2021) 4199–4216. Crossref

(12) W. Wang, A. Wang, Vermiculite Nanomaterials: Structure, Properties, and Potential Applications. Nanomaterials from Clay Minerals, (2019) 415–484. Crossref

(13) N. Kumari, C. Mohan, Basics of clay minerals and their characteristic properties. Clay and Clay Minerals, Federal University of ABC, Brazil, 2021, p. 222. Crossref

(14) P. Akisanmi, Classification of clay minerals. Mineralogy, Czech Academy of Sciences, Czech Republic, 2022, p. 266. Crossref

(15) G. Kurmangazhi, S.M. Tazhibayeva, K.B. Musabekov, et al., Colloid Journal 83 (2021) 343–351. Crossref

(16) K.-M. Li, J.-G. Jiang, S.-C. Tian, et al., J. Phys. Chem. C 118 (2014) 2454–2462. Crossref

(17) C.N.C. Hitam, A.A. Jalil, S.M. Izan, et al., Powder Technol. 375 (2020) 397–408. Crossref

(18) I. Bibi, J. Icenhower, N.K. Niazi, et al., Environmental materials and waste, 2016, 543–567. Crossref

(19) S. Gueu, G. Finqueneisel, T. Zimny, et al., Adsorpt. Sci. Technol. 37 (2019) 77–94. Crossref

(20) O.V. Alekseeva, A.N. Rodionova, N.A. Bagrovskaya, A.V. Agafonov, Prot. Met. Phys. Chem. Surf. 52 (2016) 819–824. Crossref

(21) D. Rendo, Jurnal Kimia Sains dan Aplikasi 24 (2021) 51–57. Crossref

(22) A. Boukhemkhem, K. Rida, Adsorpt. Sci. Technol. 35 (2017) 753–773. Crossref

(23) H. Dai, Y. Huang, Y. Zhang, et al., Cellulose (2019) Crossref

(24) A. Panasenko, P. Pirogovskaya, I. Tkachenko, et al., Mater. Chem. Phys. 245 (2020) 122759. Crossref

(25) Md. Mahmudun Nabi, Q. Hamidul Bari, J. Eng. Sci. 13 (2022) 91–100. Crossref

(26) M.-H. To, P. Hadi, C.-W. Hui, et al., J. Mol. Liq. 241 (2017) 386–398. Crossref

(27) V.O. Shikuku, T. Mishra, Appl. Water Sci. 11 (2021). Crossref

(28) T.A. Saleh, Environ. Sci. Pollut. Res. 22 (2015) 16721–16731. Crossref

Downloads

Published

2024-12-25

How to Cite

Kurmangazhi, G., Tazhibayeva, S., Zhang, H., Musabekov, K., & Tattibayeva, Z. (2024). Synthesis of Magnetic Composite Based on Vermiculite. Eurasian Chemico-Technological Journal, 26(4), 225–232. https://doi.org/10.18321/ectj1646

Issue

Section

Articles

Most read articles by the same author(s)