Promising Directions in Chemical Processing of Methane from Coal Industry. Part 2. Development of Catalysts

Authors

  • E.V. Matus Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia
  • M.A. Kerzhentsev Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia
  • A.P. Nikitin Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia
  • S.A. Sozinov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia
  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj1500

Keywords:

Ni catalyst, Promoter, Nanoparticles, Coal methane, Reforming, Synthesis gas

Abstract

For the creation of new highly active and stable catalysts for the complete processing of coal methane, different methods for designing catalytic systems are being applied, including the use of the effects of mutual strengthening of the action of metals and modifying the composition of the supports. Different chemical synthesis approaches were considered for obtaining supported Ni nanoparticles with controllable compositions and sizes. For the citrate sol-gel method, it was found that with an increase in the citric acid/metals molar ratio from 0 to 1, the textural characteristics (specific surface area: 76→100 m2/g) of Сe0.2Ni0.8O1.2/Al2O3 catalysts, dispersion (average particle size: 10→5 nm) and reducibility (temperature of maximum H2 consumption: 580→530 °C) of the Ni-containing species improved. For calcined in air at 500 °C catalysts it was shown that Ni2+ cations stabilized in NiO or in the Ce-Ni-O solid solution. The proportion of the latter was maximum at a citric acid/metal molar ratio equal to 0.25, which was chosen as the optimal value in the investigated range of 0.25–1.0. An increase in the calcination temperature from 500 to 900 °C contributes to the stabilization of Ni2+ in the Al-Ni-O solid solution, which leads to a slight deterioration in the textural properties of the samples and a significant difficulty in their reducibility. After reductive activation at 800 °C of Сe0.2Ni0.8O1.2/Al2O3 samples, catalytically active metal Nio nanoparticles of ~7 nm in size were formed for effective reforming of coal industry methane into synthesis gas.

References

(1). Statistical Review of World Energy, 2021. URL

(2). D. Strąpoć, F.W. Picardal, C. Turich, et al., Appl. Environ. Microbiol. 74 (2008) 2424–2432. Crossref

(3). T.A. Moore, Int. J. Coal Geol. 101 (2012) 36–81. Crossref

(4). B. Wang, Y. Wang, X. Cui, et al., Biotechnol. Biofuels. 12 (2019). Crossref

(5). B. Saha, A.S. Patra, A.K. Mukherjee, J. Mol. Graph. Model. 106 (2021) 107868. Crossref

(6). D. Hong, L. Liu, C. Wang, et al., Fuel 300 (2021) 120972. Crossref

(7). N. Kholod, M. Evans, R.C. Pilcher, et al., J. Clean. Prod. 256 (2020) 120489. Crossref

(8). E.V. Matus, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 24 (2022) 203–214. Crossref

(9). E.V. Matus, I.Z. Ismagilov, E.S. Mikhaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 24 (2022) 69–91. Crossref

(10). S. Wang, X. Wang, S. Gao, et al., Greenhouse Gas Sci Technol. 7 (2017) 29–39. Crossref

(11). L.G. Pinaeva, A.S. Noskov, Kataliz v promyshlennosti 21 (2021) 308–330 (in Russ.). Crossref

(12). T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 116 (2016) 5987–6041. Crossref

(13). V.H. Mueller, M.P. Duduković, C.S. Lo, Appl. Catal. A Gen. 488 (2014) 138–147. Crossref

(14). J.A. Rodriguez, D.C. Grinter, Z. Liu, et al., Chem. Soc. Rev. 46 (2017) 1824–1841. Crossref

(15). R.O. da Fonseca, A.R. Ponseggi, R.C. Rabelo-Neto, R.C.C. Simões, L.V. Mattos, F.B. Noronha, J. CO2 Util. 57 (2022). Crossref

(16). C. Vogt, J. Kranenborg, M. Monai, B.M. Weckhuysen, ACS Catal. 10 (2020) 1428–1438. Crossref

(17). E.V. Matus, L.B. Okhlopkova, O.B. Sukhova, et al., J. Nanoparticle Res. 21 (2019) 11. Crossref

(18). Y.Lv, Z. Xin, X. Meng, et al., Appl. Catal. A Gen. 543 (2017) 125–132. Crossref

(19). Е.V Matus, S.D. Vasiliev, I.Z. Ismagilov, et al., Chem. Sustain. Dev. 28 (2020) 403–411. Crossref

(20). E.V. Matus, D.V. Nefedova, O.B. Sukhova, et al., Kinet. Catal. 60 (2019) 496–507. Crossref

(21). E. Matus, O. Sukhova, M. Kerzhentsev, et al., Catalysts 12 (2022) 1493. Crossref

(22). P. Mäki-Arvela, D.Y. Murzin, Appl. Catal. A Gen. 451 (2013) 251–281. Crossref

(23). I.Z. Ismagilov, A.V. Vosmerikov, L.L. Korobitsyna, et al., Eurasian Chem.-Technol. J. 23 (2021) 147–168. Crossref

(24). L. Huang, D. Li, D. Tian, et al., Energy Fuels 36 (2022) 5102–5151. Crossref

(25). S. Saeedi, X.T. Nguyen, F. Bossola, et al., Catalysts 13 (2023) 379. Crossref

(26). J. Juan-Juan, M.C. Román-Martínez, M.J. Illán-Gómez, Appl. Catal. A Gen. 355 (2009) 27–32. Crossref

(27). S. Katheria, A. Gupta, G. Deo, D. Kunzru, Int. J. Hydrogen Energy 41 (2016) 14123–14132. Crossref

(28). Z.R. Ismagilov, E.V. Matus, I.Z. Ismagilov, et al., Catal. Today (2019) 166–182. Crossref

(29). E.V. Matus, I.Z. Ismagilov, S.A. Yashnik, et al., Int. J. Hydrogen Energy 45 (2020) 33352–33369. Crossref

(30). V.K. Jaiswar, S. Katheria, G. Deo, D. Kunzru, Int. J. Hydrogen Energy 42 (2017) 18968–18976. Crossref

(31). E. Matus, M. Kerzhentsev, I. Ismagilov, et al., Energies 16 (2023). Crossref

(32). C.A. Strydom, C.P.J. van Vuuren, J. Therm. Anal. 32 (1987) 157–160. Crossref

(33). B. Małecka, A. Łącz, E. Drozdz, A. Małecki, J. Therm. Anal. Calorim. 119 (2015) 1053–1061. Crossref

(34). L. Li, F. Chen, J.-Q. Lu, M.-F. Luo, J. Phys. Chem. A. 115 (2011) 7972–7977. Crossref

(35). M. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, Langmuir 27 (2011) 3872–3877. Crossref

(36). N. Yisup, Y. Cao, W.L. Feng, W.L. Dai, K.N. Fan, Catal. Lett. 99 (2005) 207–213. Crossref

(37). C. Jiménez-González, Z. Boukha, B. De Rivas, et al., Applied Catal. A Gen. 466 (2013) 9–20. Crossref

(38). Anushree, S. Kumar, C. Sharma, Catal. Sci. Technol. 6 (2016) 2101–2111. Crossref

(39). Y. Dai, P. Lu, Z. Cao, C.T. Campbell, Y. Xia, Chem. Soc. Rev. 47 (2018) 4314–4331. Crossref

Downloads

Published

2023-07-15

How to Cite

Matus, E., Kerzhentsev, M., Nikitin, A., Sozinov, S., & Ismagilov, Z. (2023). Promising Directions in Chemical Processing of Methane from Coal Industry. Part 2. Development of Catalysts. Eurasian Chemico-Technological Journal, 25(2), 103–113. https://doi.org/10.18321/ectj1500

Issue

Section

Articles