Development of Fe-based Catalysts for Purification of Coke Oven Gases

Authors

  • Z.R. Ismagilov Boreskov Institute of Catalysis, prosp. ak. Lavrentieva, 5, 630090 Novosibirsk, Russia
  • O.Yu. Podyacheva Boreskov Institute of Catalysis, prosp. ak. Lavrentieva, 5, 630090 Novosibirsk, Russia
  • L.T. Tzykoza Boreskov Institute of Catalysis, prosp. ak. Lavrentieva, 5, 630090 Novosibirsk, Russia
  • M. Sakashita Japan Technical Information Service, Sogo-kojimachi No 3 Bldg., 1-6 Kojimachi, Chiyoda-ku, 1020083 Tokyo, Japan
  • N.V. Shikina Boreskov Institute of Catalysis, prosp. ak. Lavrentieva, 5, 630090 Novosibirsk, Russia
  • V.A. Ushakov Boreskov Institute of Catalysis, prosp. ak. Lavrentieva, 5, 630090 Novosibirsk, Russia
  • V.V. Kuznetsov Boreskov Institute of Catalysis, prosp. ak. Lavrentieva, 5, 630090 Novosibirsk, Russia
  • Sh. Tamura Japan Technical Information Service, Sogo-kojimachi No 3 Bldg., 1-6 Kojimachi, Chiyoda-ku, 1020083 Tokyo, Japan
  • K. Fujimoto Nippon Steel Co., 20-1 Shintomi, Futtsu-city, Chiba, 2938511, Japan

DOI:

https://doi.org/10.18321/ectj614

Abstract

Fe-based catalysts of different geometry are developed for the purification of coke oven gases: bulk, supported on alumina and supported on alumina silicate monoliths. Adsorption and decomposition of H2S on the catalysts developed are studied. Influence of active component content, type of support material and modification by Mn and Mo on the catalyst activity in de-H2S process is elucidated. Supported monolith catalysts show superior activity over bulk and supported spherical catalysts in H2S decomposition reaction and demonstrate stable operation in ammonia decomposition process during 2 hours at 900 °C giving 100% ammonia conversion.

References

(1). Chivers, T., Hyne, J., Lau, C. et al., Int. J. Hydrogen Energy 5:499 (1980).

(2). Chivers, T., Lau, C. et al., Int. J. Hydrogen Energy 10:21 (1985).

(3). Chivers, T., Lau C. et al., Int. J. Hydrogen Energy 12:561 (1987).

(4). Al-Shamma, L.M., Naman, S.A., Int. J. Hydrogen Energy 14:173 (1989).

(5). Al-Shamma, L.M., Naman, S.A., Int. J. Hydrogen Energy 15:1 (1990).

(6). Lee, Y.S., Kim, H.T., Yoo, K.O., Ind. Eng. Chem. Res. 34:1181 (1995).

(7). Fukuda, K, Dokiya, M. et al., Ind. Eng. Chem. Fundam. 17:243 (1978).

(8). Zaghigalov, V.A., Gerei, S.V., Rubanik, M.Ya., Kinetics and Catalysis 16:967 (1975).

(9). Zaman, J., Chakma, A., Fuel Process Technol. 41:159 (1995).

(10). Yang, B.L., Kung, H.H., Ind. Eng. Chem. Res. 33:1090 (1994).

(11). US Patents: 4273749 (1981).

(12). US Patents: 5188811 (1993).

(13). US Patents: 5632964 (1997).

(14). US Patents: 5679313 (1997).

(15). Wakker, J.P., Gerritsen, A.W., Moulijn, J.A., Ind. Eng. Chem. Res. 32:139 (1993).

(16). Bishara, A., Salman O.A., Int. J. Hydrogen Energy12: 679 (1987).

(17). Yumura, M., Furimsky, E., Appl. Catal. 16:157 (1985).

(18). Meeyoo, V., Adesina, A.A., Foulds, G., Chem. Eng. Commun. 144:1 (1996).

(19). Koloidas, V.E., Papayannakos, N.G., Ind. Eng. Chem. Res. 30:345 (1991).

(20). Moffat, S.C., Adesina, A.A., Catal. Lett. 37:167 (1996).

(21). Gwaunza, M., Adesina, A.A., React. Kinet. Catal. Lett. 62:55 (1997).

Downloads

Published

2004-09-20

How to Cite

Ismagilov, Z., Podyacheva, O., Tzykoza, L., Sakashita, M., Shikina, N., Ushakov, V., … Fujimoto, K. (2004). Development of Fe-based Catalysts for Purification of Coke Oven Gases. Eurasian Chemico-Technological Journal, 6(3), 213–219. https://doi.org/10.18321/ectj614

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>