Determination of Polycyclic Aromatic Hydrocarbons in Coal from the Kuznetsk Coal Basin by Means of GC/MS and GC/GC-FID

  • E.V. Zhuravleva Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Soviet Ave., Kemerovo, Russia
  • N.V. Zhuravleva Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Soviet Ave., Kemerovo, Russia; West Siberian Testing Center, 9 Ordzhonikidze str., Novokuznetsk, Russia; Siberian State Industrial University, 42 Kirova str., Novokuznetsk, Russia
  • E.S. Mikhaylova Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Soviet Ave., Kemerovo, Russia
  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Soviet Ave., Kemerovo, Russia
  • M.V. Shashkov Federal Research Center G.K. Boreskov Institute of Catalysis, SB RAS, 5 Ac. Lavrentiev Ave., Novosibirsk, Russia
  • P.A. Dolgushev Federal Research Center G.K. Boreskov Institute of Catalysis, SB RAS, 5 Ac. Lavrentiev Ave., Novosibirsk, Russia
Keywords: Coal powders, Extraction, High performance liquid chromatography, Two-dimensional gas Chromatography

Abstract

Results of the investigation of polycyclic aromatic hydrocarbons (PAHs) content in fine coal powders prepared according to a special procedure within size classes (-0.2+0.1) mm, (-0.1+0.063) mm, (-0.063+0.04) mm, (-0.04) mm for ten different coal ranks (B, D, G, Zh, K, KS, OS, SS, T, A) from the Kuznetsk coal basin are presented. The qualitative and quantitative PAHs content in coal samples was determined by means of GC-MS using a SCION SQ SELECT instrument (Bruker, USA). The maximal Σ14 PAHs content is observed for A rank coal (224.3 mg/kg), KS (201.9 mg/kg) and T (197.8 mg/ kg), and the minimal Σ14 PAHs content is detected for B rank (2.2 mg/kg) for the size fraction (-0.04) mm. The concentration of benz(a)pyrene, which is a strong carcinogen, is within the range of 0.026‒103.1 mg/kg in coal samples under investigation. At the same time, the fraction of benz(a)pyrene is less than 45% of the total amount of detected PAHs, and it is less stable to the effect of the environment than other PAHs. The most stable component in PAHs series is phenanthrene, which was detected in the series of studied coal samples of different fractions (0.061‒43.7 mg/kg). Phenanthrene may be considered a PAHs of priority, and it may be used as a reference compound to evaluate the influence of coal mining and processing on the environment. The group composition of hydrocarbons in coal extracts was determined by means of two-dimensional gas chromatography with flame ionization detection.

References

(1). I.V. Avgushevich, E.I. Sidoruk, T.M. Bronovets, Standard Methods of Coal Testing. Coal Classification. Reklama Master, Moscow, 2018. (In Russ.).

(2). S.A. Stout, S.D. Emsbo-Mattingly, Org. Geochem. 39 (2008) 801‒819. Crossref

(3). C.T. Timoszczuk, F.R. dos Santos, L.D. Araújo, S. Taniguchi, R.A. Lourenço, M.M. de Mahiques, P.A. de Lima Ferreira, R.C. Lopes Figueira, P.A. de Neves, D. Prates, M.C. Bícego, Environ. Pollut. 284 (2021) 117469. Crossref

(4). Y. Sun, S. Qin, C. Zhao, Y. Li, H. Yu, Y. Zhang, Int. J. Coal Geol. 116–117 (2013) 281‒292. Crossref

(5). Q.J. Zhao, S.J. Qin, C.L. Zhao, Y.Z. Sun, B. Panchal, X.C. Chang, Gondwana Res. 96 (2021) 219‒231. Crossref

(6). Q. Zhao, S. Qin, C. Zhao, Y. Sun, B. Panchal, X. Chang, Data in Brief 37 (2021) 107218. Crossref

(7). J.-H. Lv, X.-Y. Wei, Y.-Y. Zhang, Z.-M. Zong, Fuel 271 (2020). Crossref

(8). Q. Lu, S. Qin, F. Xu, X. Chang, W. Wang, ACS Omega (2021) 3149–3163. Crossref

(9). M.B. Yunker, R.W. Macdonald, P.S. Ross, S.C. Johannessen, N. Dangerfieldb, Org. Geochem. 89–90 (2015) 80–116. Crossref

(10). J. Ribeiro, T. Silva, D. Flores, J. Hazard. Mater. 199–200 (2011) 105–110. Crossref

(11). Q. Ya-hui, W. Ting, H. Xiu-ping, L. Zhong-geng, L. Han-dong, Journal of Chinese Mass Spectrometry Society 43(2) (2022) 168–177. URL

(12). B. Gao, Q. Feng, L. Zhou, H. Wu, E. Alam, Pol. J. Environ. Stud. 28 (2019) 1665–1674. Crossref

(13). J. Xue, Z. Niu, C-L. Chou, L.C. Zhang, Energy Fuels 21 (2007) 881–890. Crossref

(14). W. Song, F. Cao, Y.C. Lin, Md.M. Haque, X. Wu, Y. Zhang, C. Zhang, F. Xie, Y.L. Zhang, Atmos. Res. 248 (2021) 105192. Crossref

(15). N.V. Zhuravleva, R.R. Potokina, Z.R. Ismagilov, E.R. Khabibulina, Chem. Sustain. Dev. 2 (2015) 117–123.

(16). N.V. Zhuravleva, E.R. Khabibulina, Z.R. Ismagilov, Z.R. Potokina, S.A. Sozinov, Chem. Sustain. Dev. 3 (2016) 355–361.

(17). N.V. Zhuravleva, R.R. Potokina, Z.R. Ismagilov, E.R. Khabibulina, Chem. Sustain. Dev. 5 (2014) 445‒454.

(18). E.V. Zhuravleva, E.S. Mikhailova, N.V. Zhuravleva, Z.R. Ismagilov, Chem. Sustain. Dev. 3 (2020) 318‒325. Crossref

(19). N.V. Zhuravleva, E.R. Khabibulina, E.V. Zhuravleva, Mikhaylova, Z.R. Ismagilov, Vestnik of Kuzbass State Technical University 3 (2020) 33‒44. Crossref

(20). E.V. Zhuravleva, N.V. Zhuravleva, E.S. Mikhailova, S.A. Sozinov, Z.R. Ismagilov, Chem. Sustain. Dev. 5 (2021) 525‒535. Crossref

(21). B. Gao, Q. Feng, L. Zhou, H. Wu, E. Alam, Pol. J. Environ. Stud. 28 (2019) 1665‒1674. Crossref

(22). Z.X. Liu, X.W. Zhang, X.X. Wei, S.X. Zhou, Acad. J. Sci. Res. 7 (2019) 611‒615. Crossref

(23). Z.B. Zhao, K. Liu, W. Xie, W.P. Pan, J.T. Riley, J. Hazard. Mater. 73 (2000) 77‒85. Crossref

(24). R. Wang, L. Guijian, Z. Jiamei, C. Chen-Lin, L. Jingjing, Energy Fuels 24 (2010) 6061‒6066. Crossref

Published
2022-07-25
How to Cite
[1]
E. Zhuravleva, N. Zhuravleva, E. Mikhaylova, Z. Ismagilov, M. Shashkov, and P. Dolgushev, “Determination of Polycyclic Aromatic Hydrocarbons in Coal from the Kuznetsk Coal Basin by Means of GC/MS and GC/GC-FID”, Eurasian Chem.-Technol. J., vol. 24, no. 2, pp. 103-114, Jul. 2022.
Section
Articles