Preparation of Carbon Nanotubes with Supported Metal Oxide Nanoparticles: Effect of Metal Precursor on Thermal Decomposition Behavior of the Materials

Authors

  • E.V. Matus Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • L.M. Khitsova Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • O.S. Efimova Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • S.A. Yashnik Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • N.V. Shikina Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj887

Keywords:

carbon nanomaterial, nanoparticles, catalyst, thermal analysis

Abstract

To develop new catalysts based on carbon nanomaterials with supported metal oxide nanoparticles for oxidative transformations of sulfur compounds, a series of metal oxide nanoparticle-decorated carbon nanotubes (MOx/CNTs) were prepared by incipient wetness impregnation at a variation of the active metal type (M = Ce, Mo, Cu). The thermal decomposition of bulk and CNT supported metal precursors used in the preparation of MOx/CNTs was analyzed under inert atmosphere employing several thermoanalytical techniques (thermogravimetry, differential thermogravimetry and differential scanning calorimetry) coupled with mass spectrometry. The thermolysis parameters of the bulk and supported metal precursors were compared and the effect of CNT support on the decomposition pattern of compounds was elucidated. It was established that the decomposition of metal precursors supported on CNTs was started and completed at temperatures of 15‒25 and 25‒70°C lower, respectively, compared with the bulk active metal precursor. The enhancement of CNT support stability against thermal degradation is observed in the following row of metal cations: Ce < Cu < Мо < pristine and metal anions of precursor: nitrate < chloride < sulfate. The optimal mode of thermal treatment of catalyst and appropriate active metal precursors were selected for advanced synthesis of nanosized MOx/CNT catalyst.

References

(1). F. Zaera, Chem. Soc. Rev. 42 (2013) 2746–2762. Crossref

(2). C.E. Figueira, P.F. Moreira, R. Giudici, R.M.B. Alves, M. Schmal, Appl. Catal. A Gen. 550 (2018) 297–307. Crossref

(3). Z.R. Ismagilov, E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, S.A. Yashnik, V.A. Ushakov, M.A. Kerzhentsev, Catal. Today 323 (2019) 166–182. Crossref

(4). P. Mäki-Arvela, D.Y. Murzin, Appl. Catal. A Gen. 451 (2013) 251–281. Crossref

(5). E.V. Matus, L.B. Okhlopkova, O.B. Sukhova, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, J. Nanoparticle Res. 21 (2019). Crossref

(6). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394– 402. Crossref

(7). E.V. Matus, D.V. Nefedova, O.B. Sukhova, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, A.P. Nikitin, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 60 (2019) 496–507. Crossref

(8). M. Gao, N. Jiang, Y. Zhao, C. Xu, H. Su, S. Zeng, J. Rare Earths. 34 (2016) 55–60. Crossref

(9). W. Ahmed, H.S. Ahmed, H.S. El-Sheshtawy, N.A. Mohamed, A.I. Zahran, J. Fuel Chem. Technol. 44 (2016) 853–861. Crossref

(10). H. Wang, X. Wang, J. Zheng, F. Peng, H. Yu, Chinese J. Catal. 35 (2014) 1687–1694. Crossref

(11). J.P. Tessonnier, O. Ersen, G. Weinberg, C. Pham-Huu, D.S. Su, R. Schlögl, ACS Nano 3 (2009) 2081–2089. Crossref

(12). J. Wang, X. Quan, S. Chen, H. Yu, G. Liu, J. Hazard. Mater. 368 (2019) 621–629. Crossref

(13). Z. Zhao, H. Zou, W. Lin, J. Rare Earths. 31 (2013) 247–250. Crossref

(14). S-K. Ryu, W-K. Lee, S-J. Park, Carbon Lett. 5 (2004) 180–185

(15). Y. Lin, D.W. Baggett, J.W. Kim, E.J. Siochi, J.W. Connell, ACS Appl. Mater. Interfaces. 3 (2011) 1652–1664. Crossref

(16). A. Mahajan, A. Kingon, Á. Kukovecz, Z. Konya, P.M. Vilarinho, Mater. Lett. 90 (2013) 165–168. Crossref

(17). Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, A.A. Hajji, O.R. Koseoglu, Catal. Rev. - Sci. Eng. 53 (2011) 199–255. Crossref

(18). W. Jiang, D. Zheng, S. Xun, Y. Qin, Q. Lu, W. Zhu, H. Li, Fuel 190 (2017) 1–9. Crossref

(19). X. Zhang, Y. Tang, S. Qu, J. Da, Z. Hao, ACS Catal. 5 (2015) 1053–1067. Crossref

(20). Y. Gao, R. Gao, G. Zhang, Y. Zheng, J. Zhao, Fuel 224 (2018) 261–270. Crossref

(21). W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem. 16 (2014) 211–220. Crossref

(22). N.M. Meman, B. Zarenezhad, A. Rashidi, Z. Hajjar, E. Esmaeili, J. Ind. Eng. Chem. 22 (2015) 179–184. Crossref

(23). N. Mohammadi Meman, M. Pourkhalil, A. Rashidi, B. ZareNezhad, J. Ind. Eng. Chem. 20 (2014) 4054–4058. Crossref

(24). Z.R. Ismagilov, M.A. Kerzhentsev, S.A. Yashnik, S.R. Khairulin, A. V. Salnikov, V.N. Parmon, A. Bourane, O.R. Koseoglu, Eurasian Chem. Tech. J. 17 (2015) 119–128. Crossref

(25). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, A.A. Saraev, V.V. Kaichev, L.M. Khitsova, Z.R. Ismagilov, J. Yamin, O.R. Koseoglu, Kinet. Catal. 58 (2017) 58–72. Crossref

(26). S.A. Yashnik, M.A. Kerzhentsev, A. V. Salnikov, Z.R. Ismagilov, A. Bourane, O.R. Koseoglu, Kinet. Catal. 56 (2015) 466–475. Crossref

(27). W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, W.N.A.W. Mokhtar, Fuel Process. Technol. 101 (2012) 78–84. Crossref

(28). S. Sahebian, S.M. Zebarjad, J. Vahdati Khaki, A. Lazzeri, Int. Nano Lett. 6 (2016) 183–190. Crossref

(29). C.T. Hsieh, J.Y. Lin, Adv. Mater. Res. 55–57 (2008) 545–548. Crossref

(30). P.M. Masipa, T. Magadzu, B. Mkhondo, S. Afr. J. Chem. 66 (2013) 173–178

(31). H.M. Elnabawy, J. Casanova-Chafer, B. Anis, M. Fedawy, M. Scardamaglia, C. Bittencourt, A.S.G. Khalil, E. Llobet, X. Vilanova, Beilstein J. Nanotechnol. 10 (2019) 105–118. Crossref

(32). R. Rajarao, R.P. Jayanna, V. Sahajwalla, B.R. Bhat, Procedia Mater. Sci. 5 (2014) 69–75. Crossref

(33). A. Corma, P. Concepción, M. Boronat, M.J. Sabater, J. Navas, M.J. Yacaman, E. Larios, A. Posadas, M.A. López-Quintela, D. Buceta, E. Mendoza, G. Guilera, A. Mayoral, Nat. Chem. 5 (2013) 775–81. Crossref

(34). K.S. Khashan, G.M. Sulaiman, R. Mahdi, Artif. Cell. Nanomed. B. 45 (2017) 1699–1709. Crossref

(35). K.S. Khashan, M.S. Jabir, F.A. Abdulameer, J. Phys. Conf. Ser. 1003 (2018). Crossref

(36). B. Małecka, A. Łącz, E. Drozdz, A. Małecki, J. Therm. Anal. Calorim. 119 (2015) 1053–1061. Crossref

(37). M.J. Tiernan, E.A. Fesenko, P.A. Barnes, G.M.B. Parkes, M. Ronane, Thermochim. Acta. 379 (2001) 163–175. Crossref

(38). Z. Wu, X. Cai, Z. Yang, J. Nanoparticle Res. 17 (2015) 1–8. Crossref

(39). H. Li, H. Xu, J. Wang, J. Nat. Gas Chem. 20 (2011) 1–8. Crossref

(40). Z.R. Ismagilov, S.A. Yashnik, N.V. Shikina, E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, Eurasian Chem. Tech. J. 21 (2019) 291–302.

(41). C.A. Strydom, C.P.J. van Vuuren, J. Therm. Anal. 32 (1987) 157–160. Crossref

(42). S. Xue, W. Wu, X. Bian, Y. Wu, J. Rare Earths. 35 (2017) 1156–1163. Crossref

(43). R. Farra, F. Girgsdies, W. Frandsen, M. Hashagen, R. Schlögl, D. Teschner, Catal. Letters. 143 (2013) 1012–1017. Crossref

(44). N. Audebrand, N. Guillou, J.P. Auffrédic, D. Louër, Thermochim. Acta. 286 (1996) 83–87. Crossref

(45). M.F.P. da Silva, J.R. Matos, P.C. Isolani, J. Therm. Anal. Calorim. 94 (2008) 305–311. Crossref

(46). L. Tai, P.A. Lessing, J. Mater. Res. 7 (1992) 502–510. Crossref

(47). I.A. Farbun, I. V. Romanova, T.E. Terikovskaya, D.I. Dzanashvili, S.A. Kirillov, Russ. J. Appl. Chem. 80 (2007) 1798–1803. Crossref

(48). P. Wiecinska, J. Therm. Anal. Calorim. 123 (2016) 1419–1430. Crossref

(49). M. Getsova, D. Todorovsky, V. Enchev, I. Wawer, Monatshefte Fur Chemie. 138 (2007) 389–401. Crossref

(50). I.V. Morozov, K.O. Znamenkov, Y.M. Korenev, O.A. Shlyakhtin, Thermochim. Acta. 403 (2003) 173–179. Crossref

(51). T. Cseri, S. Békássy, G. Kenessey, G. Liptay, F. Figueras, Thermochim. Acta. 288 (1996) 137– 154. Crossref

(52). J. Paulik, F. Paulik, M. Arnold, J. Therm. Anal. 34 (1988) 1455–1466. Crossref

(53). M. Nafees, M. Ikram, S. Ali, Dig. J. Nanomater. Biostructures. 10 (2015) 635–641.

(54). Y. Yu, Asian J. Chem. 19 (2007) 2023–2028.

(55). M. Kamruddin, P.K. Ajikumar, S. Dash, R. Krishnan, A.K. Tyagi, K. Krishan, J. Therm. Anal. 48 (1997) 277–286. Crossref

(56). Z. Wang, G. Marin, G.F. Naterer, K.S. Gabriel, J. Therm. Anal. Calorim. 119 (2015) 815–823. Crossref

(57). A. Biedunkiewicz, M. Krawczyk, U. Gabriel- Polrolniczak, P. Figiel, J. Therm. Anal. Calorim. 116 (2014) 715–726. Crossref

(58). G. Ciembroniewicz, R. Dziembaj, R. Kalicki, J. Therm. Anal. 27 (1983) 125–138. Crossref

(59). E. Filipek, I. Rychlowska-Himmel, A. Paczesna, J. Therm. Anal. Calorim. 109 (2012) 711–716. Crossref

(60). A.I. Tarasova, A.Yu. Postnikov, P.I.Gavrilova, Combust. Explos. Shok Waves 35 (1999) 514– 517. Crossref

(61). E.V. Matus, L.T. Tsykoza, Z.R. Ismagilov, V.V. Kuznetsov, Chemistry Sustain. Dev. 11 (2003) 167–171.

Downloads

Published

2019-12-17

How to Cite

Matus, E., Khitsova, L., Efimova, O., Yashnik, S., Shikina, N., & Ismagilov, Z. (2019). Preparation of Carbon Nanotubes with Supported Metal Oxide Nanoparticles: Effect of Metal Precursor on Thermal Decomposition Behavior of the Materials. Eurasian Chemico-Technological Journal, 21(4), 303–316. https://doi.org/10.18321/ectj887

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>