Hydrogen Production from Coal Industry Methane

Authors

  • Е.V. Matus Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, 18, pr. Sovetskiy, Kemerovo, Russia
  • I.Z. Ismagilov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, 18, pr. Sovetskiy, Kemerovo, Russia
  • E.S. Mikhaylova Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, 18, pr. Sovetskiy, Kemerovo, Russia
  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, 18, pr. Sovetskiy, Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj1320

Keywords:

Hydrogen, Coal industry methane, Catalytic technologies

Abstract

Coal industry methane is a fossil raw material that can serve as an energy carrier for the production of heat and electricity, as well as a raw material for obtaining valuable products for the chemical industry. To ensure the safety of coal mining, rational environmental management and curbing global warming, it is important to develop and improve methods for capturing and utilizing methane from the coal industry. This review looks at the scientific basis and promising technologies for hydrogen production from coal industry methane and coal production. Technologies for catalytic conversion of all types of coal industry methane (Ventilation Air Methane – VAM, Coal Mine Methane – CMM, Abandoned Mine Methane – AMM, Coal-Bed Methane – CBM), differing in methane concentration and methane-to-air ratio, are discussed. The results of studies on the creation of a number of efficient catalysts for hydrogen production are presented. The great potential of hybrid methods of processing natural coal and coal industry methane has been demonstrated.

References

(1). I. Dincer, C. Acar, Int. J. Hydrogen Energy 42 (2017) 14843–14864. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2017.04.107

(2). Bloomberg New Energy Finance. Hydrogen Economy Outlook 2020. URL

(3). Bloomberg New Energy Finance. New Energy Outlook 2021. URL

(4). Latrobe Valley. URL

(5). Hydrogen: China’s Progress and Opportunities for a Green Belt and Road Initiative. URL

(6). C. Higman, S. Tam, Chem. Rev. 114 (2014) 1673–1708. Crossref DOI: https://doi.org/10.1021/cr400202m

(7). Department of Energy US, Enabling A Low- Carbon Economy, Washington, DC 20585. (2020) 24. URL

(8). Hydrogen Energy Supply Chain Pilot Project between Australia and Japan. URL

(9). Gosstandart of Russia. ОK 032-2002 All-Russian classifier of minerals and groundwater. URL

(10). M. Mastalerz, A. Drobniak, Coalbed Methane: Reserves, Production, and Future Outlook, in: Future Energy (3rd Ed.), 2020, pp. 97–109. Crossref DOI: https://doi.org/10.1016/B978-0-08-102886-5.00005-0

(11). N.M. Storonskiy, V.T. Khryukin, D.V. Mitronov, E.V. Shvachko, Rossiyskiy khimicheskiy zhurnal [Russian Chemical Journal] 52 (2018) 63–72 (in Russian).

(12). E.Yu. Makarova, D.V. Mitronov, Georesursy [Georesources] 2 (2015) 101–106. Crossref DOI: https://doi.org/10.18599/grs.61.2.9

(13). N. Kholod, M. Evans, R.C. Pilcher, V. Roshchanka, F. Ruiz, M. Coté, R. Collings, J. Clean. Prod. 256 (2020) 120489. Crossref DOI: https://doi.org/10.1016/j.jclepro.2020.120489

(14). The Project: History and Prospects. URL

(15). On the Prospects for Coal gas production in Russia. URL

(16). Severstal will provide itself with electricity through the use of secondary energy resources. Electronic resource. URL

(17). Sibuglemet: Implementation of the environ¬mental strategy. URL

(18). On the protection and condition of the environ¬ment of the Russian Federation in 2020. State report. M.: Ministry of Natural Resources of Russia; Lomonosov Moscow State University. 2021.

(19). Order of the Federal Service for Environmen¬tal, Technological and Atomic Supervision of 08.12.2020 #506 “On approval of the Federal Norms and Regulations in the Field of Industri¬al Safety “Instruction on the Aerological Safety of Coal Mines”. URL

(20). United Nations Economic Commission for Europe. Best Practice Guidance for Effective Methane Drainage and Use in Coal Mines, 2016.

(21). Trends in Atmospheric Methane. Glob Monit Lab. URL

(22). D. Bosoli, C. Blumenthal, S. Andrews, J. Marks, Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation: 2015–2050, (2019). URL

(23). Top coal mine methane emitters, 2020. IEA. URL

(24). CMM and AMM Projects: Analysis of the 2021 CMM Project List. URL

(25). B. Lan, Y.R. Li, X.S. Zhao, J.D. Kang, Energies 11 (2018) 1578. Crossref DOI: https://doi.org/10.3390/en11061578

(26). X. Wang, F. Zhou, Y. Ling, Y. Xiao, B. Ma, X. Ma, S. Yu, H. Liu, K. Wei, J. Kang, Energy Fuels 35 (2021) 15398–15423. Crossref DOI: https://doi.org/10.1021/acs.energyfuels.1c02312

(27). G. Zhang, Q. Li, X. Liu, B. Lin, D. Li, Chem. Eng. Process. 170 (2021) 108703. Crossref DOI: https://doi.org/10.1016/j.cep.2021.108703

(28). Coal mine methane projects. URL

(29). Best Practices in CMM Utilization: Achieving Near-Zero Methane Emissions from Coal Mine Mining. URL

(30). J. Fernández, P. Marín, F.V. Díez, S. Ordóñez, Appl. Therm. Eng. 102 (2016) 167–175. Crossref DOI: https://doi.org/10.1016/j.applthermaleng.2016.03.171

(31). A. Setiawan, E.M. Kennedy, M. Stockenhuber, Energy Technol. 5 (2017) 521–538. Crossref DOI: https://doi.org/10.1002/ente.201600490

(32). A. Pawlaczyk-Kurek, M. Suwak, Catalysts 11 (2021) 1141. Crossref DOI: https://doi.org/10.3390/catal11101141

(33). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energy 39 (2014) 20992–21006. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.10.044

(34). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10–18. Crossref DOI: https://doi.org/10.1016/j.cattod.2012.12.007

(35). Z.R. Ismagilov, E.V. Matus, M.A. Kerzhentsev, L.T. Tsikoza, I.Z. Ismagilov, K.D. Dosumov, A.G. Mustafin, Pet. Chem. 51 (2011) 174–186. Crossref DOI: https://doi.org/10.1134/S0965544111020058

(36). E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, V.I. Zaikovskii, L.T. Tsikoza, Z.R. Ismagilov, J.A. Moulijn, Ind. Eng. Chem. Res. 46 (2007) 4063– 4074. Crossref DOI: https://doi.org/10.1021/ie0609564

(37). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, L.T. Tsikoza, Z.R. Ismagilov, React. Kinet. Catal. Lett. 98 (2009) 59–67. Crossref DOI: https://doi.org/10.1007/s11144-009-0080-7

(38). Z.R. Ismagilov, L.T. Tsikoza, E.V. Matus, G.S. Litvak, I.Z. Ismagilov, O.B. Sukhova, Eurasian Chem.-Technol. J. 7 (2005) 115–123. Crossref DOI: https://doi.org/10.18321/ectj622

(39). A. Shubin, I. Zilberberg, I. Ismagilov, E. Matus, M. Kerzhentsev, Z. Ismagilov, Mol. Catal. 445 (2018) 307–315. Crossref DOI: https://doi.org/10.1016/j.mcat.2017.11.039

(40). I.Z. Ismagilov, E.V. Matus, S.D. Vasil’ev, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 456–465. Crossref DOI: https://doi.org/10.1134/S0023158415040096

(41). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, V.I. Zaikovskii, M.A. Kerzhentsev, Z.R. Ismagilov, K.D. Dosumov, A.G. Mustafin, Eurasian Chem.- Technol. J. 12 (2010) 1–8. Crossref DOI: https://doi.org/10.18321/ectj19

(42). I.Z. Ismagilov, E.V. Matus, V.S. Popkova, V.V. Kuznetsov, V.A. Ushakov, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 622–629. Crossref DOI: https://doi.org/10.1134/S0023158417050068

(43). I.Z. Ismagilov, A.V. Vosmerikov, L.L. Korobitsyna, E.V. Matus, M.A. Kerzhentsev, A.A. Stepanov, E.S. Mihaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 23 (2021) 147–168. Crossref DOI: https://doi.org/10.18321/ectj1099

(44). T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, A.L. Chuvilin, V.B. Fenelonov, Catal. Today 102–103 (2005) 115–120. Crossref DOI: https://doi.org/10.1016/j.cattod.2005.02.011

(45). T. Reshetenko, L. Avdeeva, V. Ushakov, E. Moroz, A. Shmakov, V. Kriventsov, D. Kochubey, Y. Pavlyukhin, A. Chuvilin, Z. Ismagilov, Appl. Catal. A Gen. 270 (2004) 87– 99. Crossref DOI: https://doi.org/10.1016/j.apcata.2004.04.026

(46). T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, A.L. Chuvilin, V.A. Ushakov, Appl. Catal. A Gen. 247 (2003) 51–63. Crossref DOI: https://doi.org/10.1016/S0926-860X(03)00080-2

(47). L.B. Avdeeva, T.V Reshetenko, Z.R. Ismagilov, V.A. Likholobov, Appl. Catal. A Gen. 228 (2002) 53–63. Crossref DOI: https://doi.org/10.1016/S0926-860X(01)00959-0

(48). Z.R. Ismagilov, A.E. Shalagina, O.Y. Podyacheva, C.N. Barnakov, A.P. Kozlov, R.I. Kvon, I.Z. Ismagilov, M.A. Kerzhentsev, Kinet. Catal. 48 (2007) 581–588. Crossref DOI: https://doi.org/10.1134/S0023158407040179

(49). A.E. Shalagina, Z.R. Ismagilov, O.Y. Podyacheva, R.I. Kvon, V.A. Ushakov, Carbon 45 (2007) 1808–1820. Crossref DOI: https://doi.org/10.1016/j.carbon.2007.04.032

(50). Z.R. Ismagilov, A.E. Shalagina, O.Y. Podyacheva, A. V. Ischenko, L.S. Kibis, A.I. Boronin, Y.A. Chesalov, D.I. Kochubey, A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev, Carbon 47 (2009) 1922–1929. Crossref DOI: https://doi.org/10.1016/j.carbon.2009.02.034

(51). O.Y. Podyacheva, Z.R. Ismagilov, A.E. Shalagina, V.A. Ushakov, A.N. Shmakov, S.V. Tsybulya, V.V. Kriventsov, A.V. Ischenko, Carbon 48 (2010) 2792–2801. Crossref DOI: https://doi.org/10.1016/j.carbon.2010.04.008

(52). E.V. Matus, A.N. Suboch, A.S. Lisitsyn, D.A. Svinsitskiy, E. Modin, A. Chuvilin, Z.R. Ismagilov, O.Y. Podyacheva, Diam. Relat. Mater. 98 (2019) 107484. Crossref DOI: https://doi.org/10.1016/j.diamond.2019.107484

(53). O.Y. Podyacheva, A.S. Lisitsyn, L.S. Kibis, A.I. Stadnichenko, A.I. Boronin, E.M. Slavinskaya, O.A. Stonkus, S.A. Yashnik, Z.R. Ismagilov, Catal. Today 301 (2018) 125–133. Crossref DOI: https://doi.org/10.1016/j.cattod.2017.01.004

(54). V.V. Chesnokov, O.Y. Podyacheva, A.N. Shmakov, L.S. Kibis, A.I. Boronin, Z.R. Ismagilov, Chinese J. Catal. 37 (2016) 169–176. Crossref DOI: https://doi.org/10.1016/S1872-2067(15)60982-2

(55). O.Y. Podyacheva, Z.R. Ismagilov, Catal. Today 249 (2015) 12–22. Crossref DOI: https://doi.org/10.1016/j.cattod.2014.10.033

(56). O.Y. Podyacheva, A.N. Shmakov, Z.R. Ismagilov, Carbon 52 (2013) 486–492. Crossref DOI: https://doi.org/10.1016/j.carbon.2012.09.061

(57). Е.V Matus, S.D. Vasil`evv, I.Z. Ismagilov, V.А. Ushakov, М.А. Kerzhentsev, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 403–411. Crossref DOI: https://doi.org/10.15372/CSD2020246

(58). M.A. Kerzhentsev, E.V. Matus, I.A. Rundau, V.V. Kuznetsov, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 601–609. Crossref DOI: https://doi.org/10.1134/S002315841705010X

(59). E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, V.A. Ushakov, O.A. Stonkus, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 610–621. Crossref DOI: https://doi.org/10.1134/S0023158417050160

(60). N. Mota, I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 41 (2016) 19373–19381. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2016.05.029

(61). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394– 402. Crossref DOI: https://doi.org/10.1134/S0023158415030064

(62). I.Z. Ismagilov, E. V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A Gen. 481 (2014) 104–115. Crossref DOI: https://doi.org/10.1016/j.apcata.2014.04.042

(63). C.Ö. Karacan, F.A. Ruiz, M. Cotè, S. Phipps, Int. J. Coal Geol. 86 (2011) 121–156. Crossref DOI: https://doi.org/10.1016/j.coal.2011.02.009

(64). D. Ursueguía, E. Díaz, S. Ordóñez, Sci. Total Environ. 790 (2021) 148211. Crossref DOI: https://doi.org/10.1016/j.scitotenv.2021.148211

(65). A.V. Samarov, C.N. Barnakov, A.P. Kozlov, Z.R. Ismagilov, Coke Chem. 55 (2012) 353–357. Crossref DOI: https://doi.org/10.3103/S1068364X12090074

(66). J. Ren, C. Xie, J.Y. Lin, Z. Li, Process Saf. Environ. 92 (2014) 896–902. Crossref DOI: https://doi.org/10.1016/j.psep.2013.10.002

(67). A. Wu, H. Chen, J. Zheng, J. Yang, X. Li, C. Du, Z. Chen, A. Xu, J. Qiu, Y. Xu, J. Yan, Plasma Sci. Technol. 21 (2019) 115501. Crossref DOI: https://doi.org/10.1088/2058-6272/ab21a2

(68). A. Wu, X. Li, J. Yan, J. Yang, C. Du, F. Zhu, J. Qian, Appl. Energ. 195 (2017) 67–79. Crossref DOI: https://doi.org/10.1016/j.apenergy.2017.03.043

(69). Y. Sun, L. Chen, Y. Bao, G. Wang, Y. Zhang, M. Fu, J. Wu, D. Ye, Catal. Today 307 (2018) 212–223. Crossref DOI: https://doi.org/10.1016/j.cattod.2017.04.017

(70). J. Zhang, W. Xie, X. Li, Q. Hao, H. Chen, X. Ma, Int. J. Hydrogen Energy 44 (2019) 2633– 2644. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2018.12.005

(71). J. Wang, L. Jin, Y. Zhou, Y. Li, H. Hu, Fuel Process. Technol. 176 (2018) 85–90. Crossref DOI: https://doi.org/10.1016/j.fuproc.2018.03.012

(72). F. Ustolin, N. Paltrinieri, F. Berto, Int. J. Hydrogen Energy 45 (2020) 23809–23840. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.06.021

(73). F. Dawood, M. Anda, G.M. Shafiullah, Int. J. Hydrogen Energy 45 (2019) 3847–3869. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2019.12.059

(74). A.H. Elbadawi, L. Ge, Z. Li, S. Liu, S. Wang, Z. Zhu, Catal. Rev. 63 (2021) 1–67. Crossref DOI: https://doi.org/10.1080/01614940.2020.1743420

(75). Linde Engineering. Steam reforming. URL

(76). SMR-XTM - Zero Steam Hydrogen Production. URL

(77). Haldor Topsoe. Technology. Hydrogen. URL

(78). S. Masoudi Soltani, A. Lahiri, H. Bahzad, P. Clough, M. Gorbounov, Y. Yan, Carbon Capture Sci. Technol. 1 (2021) 100003. Crossref DOI: https://doi.org/10.1016/j.ccst.2021.100003

(79). X. Chen, L. Yang, Z. Zhou, Z. Cheng, Chem. Eng. Sci. 163 (2017) 114–122. Crossref DOI: https://doi.org/10.1016/j.ces.2017.01.036

(80). V. Palma, A. Ricca, M. Martino, E. Meloni, Chem. Eng. Process. 120 (2017) 207–215. Crossref DOI: https://doi.org/10.1016/j.cep.2017.07.012

(81). Y. Hiramitsu, M. Demura, Y. Xu, M. Yoshida, T. Hirano, Appl. Catal. A Gen. 507 (2015) 162– 168. Crossref DOI: https://doi.org/10.1016/j.apcata.2015.09.044

(82). K. Zhao, F. He, Z. Huang, G. Wei, A. Zheng, H. Li, Z. Zhao, Appl. Energ. 168 (2016) 193–203. Crossref DOI: https://doi.org/10.1016/j.apenergy.2016.01.052

(83). Y. Long, K. Li, Z. Gu, X. Zhu, Y. Wei, C. Lu, S. Lin, K. Yang, X. Cheng, D. Tian, F. He, H. Wang, Chem. Eng. J. 388 (2020) 124190. Crossref DOI: https://doi.org/10.1016/j.cej.2020.124190

(84). A. Hafizi, M.R. Rahimpour, S. Hassanajili, Appl. Energ. 165 (2016) 685–694. Crossref DOI: https://doi.org/10.1016/j.apenergy.2015.12.100

(85). H. Zhu, X. Li, N. Shi, X. Ding, Z. Yu, W. Zhao, H. Ren, Y. Pan, Y. Liu, W. Guo, Catal. Sci. Technol. 11 (2021) 1615–1625. Crossref DOI: https://doi.org/10.1039/D0CY01523G

(86). Z. Hu, Z. Miao, J. Wu, E. Jiang, Int. J. Hydrogen Energy 46 (2021) 39700–39718. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.09.242

(87). G. Vanga, D.M. Gattia, S. Stendardo, S. Scaccia, Ceram. Int. 45 (2019) 7594–7605. Crossref DOI: https://doi.org/10.1016/j.ceramint.2019.01.054

(88). C.H. Chen, C.T. Yu, W.H. Chen, Int. J. Hydrogen Energy 46 (2021) 16655–16666. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.08.284

(89). V.S. Arutyunov, A.V. Nikitin, L.N. Strekova, V.I. Savchenko, I.V. Sedov, A.V. Ozerskiy. Ia. Zimin. Zhurnal Technicheskoy Fiziki [Technical Physics] 91 (2021) 713. Crossref DOI: https://doi.org/10.21883/JTF.2021.05.50681.265-20

(90). H. Zhu, H. Dai, Z. Song, X. Wang, Z. Wang, H. Dai, S. He, Int. J. Hydrogen Energy 46 (2021) 31439–31451. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.07.036

(91). M. Harada, K. Domen, M. Hara, T. Tatsumi, Chem. Lett. 35 (2006) 968–969. Crossref DOI: https://doi.org/10.1246/cl.2006.968

(92). J. Kniep, Y.S. Lin, Ind. Eng. Chem. Res. 50 (2011) 7941–7948. Crossref DOI: https://doi.org/10.1021/ie2001346

(93). E. Ruiz-Trejo, P. Boldrin, J.L. Medley-Hallam, J. Darr, A. Atkinson, N.P. Brandon, Chem. Eng. Sci. 127 (2015) 269–275. Crossref DOI: https://doi.org/10.1016/j.ces.2015.01.047

(94). W. Deibert, M.E. Ivanova, S. Baumann, O. Guillon, W.A. Meulenberg, J. Memb. Sci. 543 (2017) 79–97. Crossref DOI: https://doi.org/10.1016/j.memsci.2017.08.016

(95). X. Wang, K. Wei, S. Yan, Y. Wu, J. Kang, P. Feng, S. Wang, F. Zhou, Y. Ling, Appl. Catal. B Environ. 268 (2020) 118413. Crossref DOI: https://doi.org/10.1016/j.apcatb.2019.118413

(96). K. Wei, X. Wang, H. Zhu, H. Liu, S. Wang, F. Chen, F. Zhou, Y. Ling, J. Power Sources 506 (2021) 230208. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2021.230208

(97). G. Aldashukurova, A.V. Mironenko, Z.A. Mansurov, N.A. Rudina, A.V. Itshenko, V.A. Ushakov, Z.R. Ismagilov, Eurasian Chem.- Technol. J. 12 (2010) 97–103. Crossref DOI: https://doi.org/10.18321/ectj31

(98). S. Shah, M. Xu, X. Pan, K.L. Gilliard- Abdulaziz, ACS Appl. Nano Mater. 4 (2021) 8626–8636. Crossref DOI: https://doi.org/10.1021/acsanm.1c02268

(99). Y. Wang, X. Fan, K. Niu, G. Shi, Int. J. Hydrogen Energy 44 (2019) 15997–16003. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2019.01.152

(100). SynCORTM – Autothermal Reformer (ATR), (n.d.). URL

(101). J. Yin, S. Su, J.S. Bae, X.X. Yu, M. Cunnington, Y. Jin, Energy Fuels 34 (2020) 655–664. URL DOI: https://doi.org/10.1021/acs.energyfuels.9b03076

(102). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, M.A. Kerzhentsev, L. Li, Z.R. Ismagilov, J. Phys.: Conf. Ser. 1749 (2021) 012023. Crossref DOI: https://doi.org/10.1088/1742-6596/1749/1/012023

(103). C.E. Kozonoe, R.M. Brito Alves, M. Schmal, Fuel 281 (2020) 118749. Crossref DOI: https://doi.org/10.1016/j.fuel.2020.118749

(104). L.Z. Sun, Y.S. Tan, Q. De Zhang, H.J. Xie, Y.Z. Han, J. Fuel Chem. Technol. 40 (2012) 831– 837. Crossref DOI: https://doi.org/10.1016/S1872-5813(12)60032-2

(105). M. Schmal, F.S. Toniolo, C.E. Kozonoe, Appl. Catal. A Gen. 568 (2018) 23–42. Crossref DOI: https://doi.org/10.1016/j.apcata.2018.09.017

(106). Z.R. Ismagilov, E. V. Matus, L.T. Tsikoza, Energy Environ. Sci. 1 (2008) 526–541. Crossref DOI: https://doi.org/10.1039/b810981h

(107). Y. Gu, P. Chen, X. Wang, Y. Lyu, W. Liu, X. Liu, Z. Yan, ACS Catal. 11 (2021) 6771–6786. Crossref DOI: https://doi.org/10.1021/acscatal.1c01467

(108). Y. Cao, Z. Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu, W. Pan, Energy Fuels 22 (2008) 1720–1730. Crossref DOI: https://doi.org/10.1021/ef7005707

(109). W. Lu, Q. Cao, B. Xu, H. Adidharma, K. Gasem, M. Argyle, F. Zhang, Y. Zhang, M. Fan, J. Clean. Prod. 265 (2020) 121786. Crossref DOI: https://doi.org/10.1016/j.jclepro.2020.121786

(110). M. Sudiro, A. Bertucco, Energy Fuels 21 (2007) 3668–3675. Crossref DOI: https://doi.org/10.1021/ef7003255

(111). A. Lampropoulos, V. Binas, M. Konsolakis, G.E. Marnellos, Int. J. Hydrogen Energy 46 (2021) 28486–28500. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2021.06.131

(112). C. He, M. Yang, J. Ren, Frontiers of sustainable manufacturing: Hybridization and modularizatio, in: Towards Sustainable Chemical Processes, 2020, p. 311–328. Crossref DOI: https://doi.org/10.1016/B978-0-12-818376-2.00012-0

Downloads

Published

25-07-2022

How to Cite

Matus Е., Ismagilov, I., Mikhaylova, E., & Ismagilov, Z. (2022). Hydrogen Production from Coal Industry Methane. Eurasian Chemico-Technological Journal, 24(2), 69–91. https://doi.org/10.18321/ectj1320

Issue

Section

Article

Most read articles by the same author(s)

1 2 3 > >>