Hydrogen Production from Coal Industry Methane

  • Е.V. Matus Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, 18, pr. Sovetskiy, Kemerovo, Russia
  • I.Z. Ismagilov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, 18, pr. Sovetskiy, Kemerovo, Russia
  • E.S. Mikhaylova Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, 18, pr. Sovetskiy, Kemerovo, Russia
  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences, 18, pr. Sovetskiy, Kemerovo, Russia
Keywords: Hydrogen, Coal industry methane, Catalytic technologies

Abstract

Coal industry methane is a fossil raw material that can serve as an energy carrier for the production of heat and electricity, as well as a raw material for obtaining valuable products for the chemical industry. To ensure the safety of coal mining, rational environmental management and curbing global warming, it is important to develop and improve methods for capturing and utilizing methane from the coal industry. This review looks at the scientific basis and promising technologies for hydrogen production from coal industry methane and coal production. Technologies for catalytic conversion of all types of coal industry methane (Ventilation Air Methane – VAM, Coal Mine Methane – CMM, Abandoned Mine Methane – AMM, Coal-Bed Methane – CBM), differing in methane concentration and methane-to-air ratio, are discussed. The results of studies on the creation of a number of efficient catalysts for hydrogen production are presented. The great potential of hybrid methods of processing natural coal and coal industry methane has been demonstrated.

References

(1). I. Dincer, C. Acar, Int. J. Hydrogen Energy 42 (2017) 14843–14864. Crossref

(2). Bloomberg New Energy Finance. Hydrogen Economy Outlook 2020. URL

(3). Bloomberg New Energy Finance. New Energy Outlook 2021. URL

(4). Latrobe Valley. URL

(5). Hydrogen: China’s Progress and Opportunities for a Green Belt and Road Initiative. URL

(6). C. Higman, S. Tam, Chem. Rev. 114 (2014) 1673–1708. Crossref

(7). Department of Energy US, Enabling A Low- Carbon Economy, Washington, DC 20585. (2020) 24. URL

(8). Hydrogen Energy Supply Chain Pilot Project between Australia and Japan. URL

(9). Gosstandart of Russia. ОK 032-2002 All-Russian classifier of minerals and groundwater. URL

(10). M. Mastalerz, A. Drobniak, Coalbed Methane: Reserves, Production, and Future Outlook, in: Future Energy (3rd Ed.), 2020, pp. 97–109. Crossref

(11). N.M. Storonskiy, V.T. Khryukin, D.V. Mitronov, E.V. Shvachko, Rossiyskiy khimicheskiy zhurnal [Russian Chemical Journal] 52 (2018) 63–72 (in Russian).

(12). E.Yu. Makarova, D.V. Mitronov, Georesursy [Georesources] 2 (2015) 101–106. Crossref

(13). N. Kholod, M. Evans, R.C. Pilcher, V. Roshchanka, F. Ruiz, M. Coté, R. Collings, J. Clean. Prod. 256 (2020) 120489. Crossref

(14). The Project: History and Prospects. URL

(15). On the Prospects for Coal gas production in Russia. URL

(16). Severstal will provide itself with electricity through the use of secondary energy resources. Electronic resource. URL

(17). Sibuglemet: Implementation of the environ¬mental strategy. URL

(18). On the protection and condition of the environ¬ment of the Russian Federation in 2020. State report. M.: Ministry of Natural Resources of Russia; Lomonosov Moscow State University. 2021.

(19). Order of the Federal Service for Environmen¬tal, Technological and Atomic Supervision of 08.12.2020 #506 “On approval of the Federal Norms and Regulations in the Field of Industri¬al Safety “Instruction on the Aerological Safety of Coal Mines”. URL

(20). United Nations Economic Commission for Europe. Best Practice Guidance for Effective Methane Drainage and Use in Coal Mines, 2016.

(21). Trends in Atmospheric Methane. Glob Monit Lab. URL

(22). D. Bosoli, C. Blumenthal, S. Andrews, J. Marks, Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation: 2015–2050, (2019). URL

(23). Top coal mine methane emitters, 2020. IEA. URL

(24). CMM and AMM Projects: Analysis of the 2021 CMM Project List. URL

(25). B. Lan, Y.R. Li, X.S. Zhao, J.D. Kang, Energies 11 (2018) 1578. Crossref

(26). X. Wang, F. Zhou, Y. Ling, Y. Xiao, B. Ma, X. Ma, S. Yu, H. Liu, K. Wei, J. Kang, Energy Fuels 35 (2021) 15398–15423. Crossref

(27). G. Zhang, Q. Li, X. Liu, B. Lin, D. Li, Chem. Eng. Process. 170 (2021) 108703. Crossref

(28). Coal mine methane projects. URL

(29). Best Practices in CMM Utilization: Achieving Near-Zero Methane Emissions from Coal Mine Mining. URL

(30). J. Fernández, P. Marín, F.V. Díez, S. Ordóñez, Appl. Therm. Eng. 102 (2016) 167–175. Crossref

(31). A. Setiawan, E.M. Kennedy, M. Stockenhuber, Energy Technol. 5 (2017) 521–538. Crossref

(32). A. Pawlaczyk-Kurek, M. Suwak, Catalysts 11 (2021) 1141. Crossref

(33). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energy 39 (2014) 20992–21006. Crossref

(34). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10–18. Crossref

(35). Z.R. Ismagilov, E.V. Matus, M.A. Kerzhentsev, L.T. Tsikoza, I.Z. Ismagilov, K.D. Dosumov, A.G. Mustafin, Pet. Chem. 51 (2011) 174–186. Crossref

(36). E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, V.I. Zaikovskii, L.T. Tsikoza, Z.R. Ismagilov, J.A. Moulijn, Ind. Eng. Chem. Res. 46 (2007) 4063– 4074. Crossref

(37). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, L.T. Tsikoza, Z.R. Ismagilov, React. Kinet. Catal. Lett. 98 (2009) 59–67. Crossref

(38). Z.R. Ismagilov, L.T. Tsikoza, E.V. Matus, G.S. Litvak, I.Z. Ismagilov, O.B. Sukhova, Eurasian Chem.-Technol. J. 7 (2005) 115–123. Crossref

(39). A. Shubin, I. Zilberberg, I. Ismagilov, E. Matus, M. Kerzhentsev, Z. Ismagilov, Mol. Catal. 445 (2018) 307–315. Crossref

(40). I.Z. Ismagilov, E.V. Matus, S.D. Vasil’ev, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 456–465. Crossref

(41). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, V.I. Zaikovskii, M.A. Kerzhentsev, Z.R. Ismagilov, K.D. Dosumov, A.G. Mustafin, Eurasian Chem.- Technol. J. 12 (2010) 1–8. Crossref

(42). I.Z. Ismagilov, E.V. Matus, V.S. Popkova, V.V. Kuznetsov, V.A. Ushakov, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 622–629. Crossref

(43). I.Z. Ismagilov, A.V. Vosmerikov, L.L. Korobitsyna, E.V. Matus, M.A. Kerzhentsev, A.A. Stepanov, E.S. Mihaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 23 (2021) 147–168. Crossref

(44). T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, A.L. Chuvilin, V.B. Fenelonov, Catal. Today 102–103 (2005) 115–120. Crossref

(45). T. Reshetenko, L. Avdeeva, V. Ushakov, E. Moroz, A. Shmakov, V. Kriventsov, D. Kochubey, Y. Pavlyukhin, A. Chuvilin, Z. Ismagilov, Appl. Catal. A Gen. 270 (2004) 87– 99. Crossref

(46). T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, A.L. Chuvilin, V.A. Ushakov, Appl. Catal. A Gen. 247 (2003) 51–63. Crossref

(47). L.B. Avdeeva, T.V Reshetenko, Z.R. Ismagilov, V.A. Likholobov, Appl. Catal. A Gen. 228 (2002) 53–63. Crossref

(48). Z.R. Ismagilov, A.E. Shalagina, O.Y. Podyacheva, C.N. Barnakov, A.P. Kozlov, R.I. Kvon, I.Z. Ismagilov, M.A. Kerzhentsev, Kinet. Catal. 48 (2007) 581–588. Crossref

(49). A.E. Shalagina, Z.R. Ismagilov, O.Y. Podyacheva, R.I. Kvon, V.A. Ushakov, Carbon 45 (2007) 1808–1820. Crossref

(50). Z.R. Ismagilov, A.E. Shalagina, O.Y. Podyacheva, A. V. Ischenko, L.S. Kibis, A.I. Boronin, Y.A. Chesalov, D.I. Kochubey, A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev, Carbon 47 (2009) 1922–1929. Crossref

(51). O.Y. Podyacheva, Z.R. Ismagilov, A.E. Shalagina, V.A. Ushakov, A.N. Shmakov, S.V. Tsybulya, V.V. Kriventsov, A.V. Ischenko, Carbon 48 (2010) 2792–2801. Crossref

(52). E.V. Matus, A.N. Suboch, A.S. Lisitsyn, D.A. Svinsitskiy, E. Modin, A. Chuvilin, Z.R. Ismagilov, O.Y. Podyacheva, Diam. Relat. Mater. 98 (2019) 107484. Crossref

(53). O.Y. Podyacheva, A.S. Lisitsyn, L.S. Kibis, A.I. Stadnichenko, A.I. Boronin, E.M. Slavinskaya, O.A. Stonkus, S.A. Yashnik, Z.R. Ismagilov, Catal. Today 301 (2018) 125–133. Crossref

(54). V.V. Chesnokov, O.Y. Podyacheva, A.N. Shmakov, L.S. Kibis, A.I. Boronin, Z.R. Ismagilov, Chinese J. Catal. 37 (2016) 169–176. Crossref

(55). O.Y. Podyacheva, Z.R. Ismagilov, Catal. Today 249 (2015) 12–22. Crossref

(56). O.Y. Podyacheva, A.N. Shmakov, Z.R. Ismagilov, Carbon 52 (2013) 486–492. Crossref

(57). Е.V Matus, S.D. Vasil`evv, I.Z. Ismagilov, V.А. Ushakov, М.А. Kerzhentsev, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 403–411. Crossref

(58). M.A. Kerzhentsev, E.V. Matus, I.A. Rundau, V.V. Kuznetsov, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 601–609. Crossref

(59). E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, V.A. Ushakov, O.A. Stonkus, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 610–621. Crossref

(60). N. Mota, I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 41 (2016) 19373–19381. Crossref

(61). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394– 402. Crossref

(62). I.Z. Ismagilov, E. V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A Gen. 481 (2014) 104–115. Crossref

(63). C.Ö. Karacan, F.A. Ruiz, M. Cotè, S. Phipps, Int. J. Coal Geol. 86 (2011) 121–156. Crossref

(64). D. Ursueguía, E. Díaz, S. Ordóñez, Sci. Total Environ. 790 (2021) 148211. Crossref

(65). A.V. Samarov, C.N. Barnakov, A.P. Kozlov, Z.R. Ismagilov, Coke Chem. 55 (2012) 353–357. Crossref

(66). J. Ren, C. Xie, J.Y. Lin, Z. Li, Process Saf. Environ. 92 (2014) 896–902. Crossref

(67). A. Wu, H. Chen, J. Zheng, J. Yang, X. Li, C. Du, Z. Chen, A. Xu, J. Qiu, Y. Xu, J. Yan, Plasma Sci. Technol. 21 (2019) 115501. Crossref

(68). A. Wu, X. Li, J. Yan, J. Yang, C. Du, F. Zhu, J. Qian, Appl. Energ. 195 (2017) 67–79. Crossref

(69). Y. Sun, L. Chen, Y. Bao, G. Wang, Y. Zhang, M. Fu, J. Wu, D. Ye, Catal. Today 307 (2018) 212–223. Crossref

(70). J. Zhang, W. Xie, X. Li, Q. Hao, H. Chen, X. Ma, Int. J. Hydrogen Energy 44 (2019) 2633– 2644. Crossref

(71). J. Wang, L. Jin, Y. Zhou, Y. Li, H. Hu, Fuel Process. Technol. 176 (2018) 85–90. Crossref

(72). F. Ustolin, N. Paltrinieri, F. Berto, Int. J. Hydrogen Energy 45 (2020) 23809–23840. Crossref

(73). F. Dawood, M. Anda, G.M. Shafiullah, Int. J. Hydrogen Energy 45 (2019) 3847–3869. Crossref

(74). A.H. Elbadawi, L. Ge, Z. Li, S. Liu, S. Wang, Z. Zhu, Catal. Rev. 63 (2021) 1–67. Crossref

(75). Linde Engineering. Steam reforming. URL

(76). SMR-XTM - Zero Steam Hydrogen Production. URL

(77). Haldor Topsoe. Technology. Hydrogen. URL

(78). S. Masoudi Soltani, A. Lahiri, H. Bahzad, P. Clough, M. Gorbounov, Y. Yan, Carbon Capture Sci. Technol. 1 (2021) 100003. Crossref

(79). X. Chen, L. Yang, Z. Zhou, Z. Cheng, Chem. Eng. Sci. 163 (2017) 114–122. Crossref

(80). V. Palma, A. Ricca, M. Martino, E. Meloni, Chem. Eng. Process. 120 (2017) 207–215. Crossref

(81). Y. Hiramitsu, M. Demura, Y. Xu, M. Yoshida, T. Hirano, Appl. Catal. A Gen. 507 (2015) 162– 168. Crossref

(82). K. Zhao, F. He, Z. Huang, G. Wei, A. Zheng, H. Li, Z. Zhao, Appl. Energ. 168 (2016) 193–203. Crossref

(83). Y. Long, K. Li, Z. Gu, X. Zhu, Y. Wei, C. Lu, S. Lin, K. Yang, X. Cheng, D. Tian, F. He, H. Wang, Chem. Eng. J. 388 (2020) 124190. Crossref

(84). A. Hafizi, M.R. Rahimpour, S. Hassanajili, Appl. Energ. 165 (2016) 685–694. Crossref

(85). H. Zhu, X. Li, N. Shi, X. Ding, Z. Yu, W. Zhao, H. Ren, Y. Pan, Y. Liu, W. Guo, Catal. Sci. Technol. 11 (2021) 1615–1625. Crossref

(86). Z. Hu, Z. Miao, J. Wu, E. Jiang, Int. J. Hydrogen Energy 46 (2021) 39700–39718. Crossref

(87). G. Vanga, D.M. Gattia, S. Stendardo, S. Scaccia, Ceram. Int. 45 (2019) 7594–7605. Crossref

(88). C.H. Chen, C.T. Yu, W.H. Chen, Int. J. Hydrogen Energy 46 (2021) 16655–16666. Crossref

(89). V.S. Arutyunov, A.V. Nikitin, L.N. Strekova, V.I. Savchenko, I.V. Sedov, A.V. Ozerskiy. Ia. Zimin. Zhurnal Technicheskoy Fiziki [Technical Physics] 91 (2021) 713. Crossref

(90). H. Zhu, H. Dai, Z. Song, X. Wang, Z. Wang, H. Dai, S. He, Int. J. Hydrogen Energy 46 (2021) 31439–31451. Crossref

(91). M. Harada, K. Domen, M. Hara, T. Tatsumi, Chem. Lett. 35 (2006) 968–969. Crossref

(92). J. Kniep, Y.S. Lin, Ind. Eng. Chem. Res. 50 (2011) 7941–7948. Crossref

(93). E. Ruiz-Trejo, P. Boldrin, J.L. Medley-Hallam, J. Darr, A. Atkinson, N.P. Brandon, Chem. Eng. Sci. 127 (2015) 269–275. Crossref

(94). W. Deibert, M.E. Ivanova, S. Baumann, O. Guillon, W.A. Meulenberg, J. Memb. Sci. 543 (2017) 79–97. Crossref

(95). X. Wang, K. Wei, S. Yan, Y. Wu, J. Kang, P. Feng, S. Wang, F. Zhou, Y. Ling, Appl. Catal. B Environ. 268 (2020) 118413. Crossref

(96). K. Wei, X. Wang, H. Zhu, H. Liu, S. Wang, F. Chen, F. Zhou, Y. Ling, J. Power Sources 506 (2021) 230208. Crossref

(97). G. Aldashukurova, A.V. Mironenko, Z.A. Mansurov, N.A. Rudina, A.V. Itshenko, V.A. Ushakov, Z.R. Ismagilov, Eurasian Chem.- Technol. J. 12 (2010) 97–103. Crossref

(98). S. Shah, M. Xu, X. Pan, K.L. Gilliard- Abdulaziz, ACS Appl. Nano Mater. 4 (2021) 8626–8636. Crossref

(99). Y. Wang, X. Fan, K. Niu, G. Shi, Int. J. Hydrogen Energy 44 (2019) 15997–16003. Crossref

(100). SynCORTM – Autothermal Reformer (ATR), (n.d.). URL

(101). J. Yin, S. Su, J.S. Bae, X.X. Yu, M. Cunnington, Y. Jin, Energy Fuels 34 (2020) 655–664. URL

(102). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, M.A. Kerzhentsev, L. Li, Z.R. Ismagilov, J. Phys.: Conf. Ser. 1749 (2021) 012023. Crossref

(103). C.E. Kozonoe, R.M. Brito Alves, M. Schmal, Fuel 281 (2020) 118749. Crossref

(104). L.Z. Sun, Y.S. Tan, Q. De Zhang, H.J. Xie, Y.Z. Han, J. Fuel Chem. Technol. 40 (2012) 831– 837. Crossref

(105). M. Schmal, F.S. Toniolo, C.E. Kozonoe, Appl. Catal. A Gen. 568 (2018) 23–42. Crossref

(106). Z.R. Ismagilov, E. V. Matus, L.T. Tsikoza, Energy Environ. Sci. 1 (2008) 526–541. Crossref

(107). Y. Gu, P. Chen, X. Wang, Y. Lyu, W. Liu, X. Liu, Z. Yan, ACS Catal. 11 (2021) 6771–6786. Crossref

(108). Y. Cao, Z. Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu, W. Pan, Energy Fuels 22 (2008) 1720–1730. Crossref

(109). W. Lu, Q. Cao, B. Xu, H. Adidharma, K. Gasem, M. Argyle, F. Zhang, Y. Zhang, M. Fan, J. Clean. Prod. 265 (2020) 121786. Crossref

(110). M. Sudiro, A. Bertucco, Energy Fuels 21 (2007) 3668–3675. Crossref

(111). A. Lampropoulos, V. Binas, M. Konsolakis, G.E. Marnellos, Int. J. Hydrogen Energy 46 (2021) 28486–28500. Crossref

(112). C. He, M. Yang, J. Ren, Frontiers of sustainable manufacturing: Hybridization and modularizatio, in: Towards Sustainable Chemical Processes, 2020, p. 311–328. Crossref

Published
2022-07-25
How to Cite
[1]
MatusЕ., I. Ismagilov, E. Mikhaylova, and Z. Ismagilov, “Hydrogen Production from Coal Industry Methane”, Eurasian Chem.-Technol. J., vol. 24, no. 2, pp. 69-91, Jul. 2022.
Section
Articles