Promoters for Improvement of the Catalyst Performance in Methane Valorization Processes
DOI:
https://doi.org/10.18321/ectj1099Keywords:
catalyst, promoters, nanoparticles, methane, dehydroaromatization, autothermal reformingAbstract
This paper is devoted to the celebration of 75 years’ jubilee of Professor Zulkhair Mansurov
In this work, the introduction of modifying additives in the composition of catalysts is considered as an effective mode of improving functional characteristics of materials for two processes of methane conversion into valuable products – methane dehydroaromatization (DHA of CH4) into benzene and hydrogen and autothermal reforming of methane (ATR of CH4) into synthesis gas. The effect of type and content of promoters on the structural and electronic state of the active component as well as catalyst activity and stability against deactivation is discussed. For DHA of CH4 the operation mode of additives M = Ag, Ni, Fe in the composition of Mo-M/ZSM-5 catalysts was elucidated and correlated with the product yield and coke content. It was shown that when Ag serves as a promoter, the duration of the catalyst stable operation is enhanced due to a decrease in the rate of the coke formation. In the case of Ni and Fe additives, the Ni-Мо and Fe-Mo alloys are formed that retain the catalytic activity for a long time in spite of the carbon accumulation. For ATR of CH4, the influence of M = Pd, Pt, Re, Mo, Sn in the composition of Ni-M catalysts supported on La2O3 or Ce0.5Zr0.5O2/Al2O3 was elucidated. It was demonstrated that for Ni-M/La2O3 catalysts, Pd is a more efficient promoter that improves the reducibility of Ni cations and increases the content of active Nio centers. In the case of Ni-M/Ce0.5Zr0.5O2/Al2O3 samples, Re is considered the best promoter due to the formation of an alloy with anti-coking and anti-sintering properties. The use of catalysts with optimal promoter type and its content provides high efficiency of methane valorization processes.
References
(1). C.P.S. Badenhorst, U.T. Bornscheuer, Trends Biochem. Sci. 43 (2018) 180–198. Crossref DOI: https://doi.org/10.1016/j.tibs.2018.01.003
(2). T. Palmer, P.L. Bonner. Enzymes: Biochemistry, Biotechnology, Clinical Chemistry, 2nd Edition, 2007.
(3). Catalysts, Petroleum and Chemical Process. [Electronic Resource]. URL (accessed 01.02.2021)
(4). Z. Xie, Z. Liu, Y. Wang, Z. Jin, Nat. Sci. Rev. 2 (2015) 167–182. Crossref DOI: https://doi.org/10.1093/nsr/nwv019
(5). C.R. Catlow, M. Davidson, C. Hardacre, G.J. Hutchings, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374 (2016) 20150089. Crossref DOI: https://doi.org/10.1098/rsta.2015.0089
(6). M. Beller, G. Centi, ChemSusChem 2 (2009) 459–460. Crossref DOI: https://doi.org/10.1002/cssc.200900118
(7). C.H. Bartholomew, R.J. Farrauto. Fundamentals of Industrial Catalytic Processes: 2nd Edition, John Wiley and Sons, 2010.
(8). Catalyst Market. [Electronic Resource]. URL (accessed 01.02.2021)
(9). V.S. Arutyunov, O.V. Krylov, Russ. Chem. Rev. 74 (2005) 1111–1137. Crossref DOI: https://doi.org/10.1070/RC2005v074n12ABEH001199
(10). E. Tezel, H.E. Figen, S.Z. Baykara, Int. J. Hydrogen Energ. 44 (2019) 9930–9940. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2018.12.151
(11). A. Holmen, Catal. Today 142 (2009) 2–8. Crossref DOI: https://doi.org/10.1016/j.cattod.2009.01.004
(12). J.J. Spivey, G. Hutchings, Chem. Soc. Rev. 43 (2014) 792–803. Crossref DOI: https://doi.org/10.1039/C3CS60259A
(13). Z.R. Ismagilov, L.T. Tsikoza, E.V. Matus, G.S. Litvak, I.Z. Ismagilov, O.B. Sukhova, Eurasian Chem.-Technol. J. 7 (2005) 115–121. Crossref DOI: https://doi.org/10.18321/ectj622
(14). E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, V.I. Zaikovskii, L.T. Tsikoza, Z.R. Ismagilov, J.A. Moulijn, Ind. Eng. Chem. Res. 46 (2007) 4063– 4074. Crossref DOI: https://doi.org/10.1021/ie0609564
(15). C. Brady, Q. Debruyne, A. Majumder, B. Goodfellow, R. Lobo, T. Calverley, B. Xu, Chem. Eng. J. 406 (2021) 127168. Crossref DOI: https://doi.org/10.1016/j.cej.2020.127168
(16). N. Kosinov, F.J.A.G. Coumans, E.A. Uslamin, A.S.G. Wijpkema, B. Mezari, E.J.M. Hensen, ACS Catal. 7 (2017) 520–529. Crossref DOI: https://doi.org/10.1021/acscatal.6b02497
(17). C. Karakaya, H. Zhu, R.J. Kee, Chem. Eng. Sci. 123 (2015) 474–486. Crossref DOI: https://doi.org/10.1016/j.ces.2014.11.039
(18). E. Yaghinirad, H. Aghdasinia, A. Naghizadeh, A. Niaei, Iran. J. Catal. 9 (2019) 147–154.
(19). R. Horn, R. Schlögl, Catal. Lett. 145 (2015) 23– 39. Crossref DOI: https://doi.org/10.1007/s10562-014-1417-z
(20). C.H.L. Tempelman, X. Zhu, E.J.M. Hensen, Chinese J. Catal. 36 (2015) 829–837. Crossref DOI: https://doi.org/10.1016/S1872-2067(14)60301-6
(21). Z.R. Ismagilov, E.V. Matus, I.Z. Ismagilov, M.A. Kerzhentsev, V.I. Zailovskii, K.D. Dosumov, A.G. Mustafinc, Eurasian Chem.-Technol. J. 12 (2010) 9–16. Crossref DOI: https://doi.org/10.18321/ectj20
(22). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, L.T. Tsikoza, Z.R. Ismagilov, React. Kinet. Catal. Lett. 98 (2009) 59–67. Crossref DOI: https://doi.org/10.1007/s11144-009-0080-7
(23). Z.R. Ismagilov, E.V. Matus, L.T. Tsikoza, Energy Environ. Sci. 1 (2008) 526–541. Crossref DOI: https://doi.org/10.1039/b810981h
(24). Z. Zakaria, S.K. Kamarudin, Renew. Sustain. Energy Rev. (2016) 250–261. Crossref DOI: https://doi.org/10.1016/j.rser.2016.05.082
(25). B. Michalkiewicz, Appl. Catal. A Gen. 277 (2004) 147–153. Crossref DOI: https://doi.org/10.1016/j.apcata.2004.09.005
(26). L.D. Nguyen, S. Loridant, H. Launay, A. Pigamo, J.L. Dubois, J.M.M. Millet, J. Catal. 237 (2006) 38–48. Crossref DOI: https://doi.org/10.1016/j.jcat.2005.10.016
(27). Y.A. Treger, V.N. Rozanov, Rev. J. Chem. 6 (2016) 83–123. Crossref DOI: https://doi.org/10.1134/S2079978016010039
(28). W. Yang, H. Wang, X. Zhu, L. Lin, Top. Catal. 35 (2005) 155–167. Crossref DOI: https://doi.org/10.1007/s11244-005-3820-6
(29). T. Fini, G. Patz, R. Wentzel, “Oxidative Coupling of Methane to Ethylene” (2014). [Electronic Resource]. URL (accessed 01.02.2021)
(30). P. Tang, Q. Zhu, Z. Wu, D. Ma, Energy Environ. Sci. 7 (2014) 2580–2591. Crossref DOI: https://doi.org/10.1039/C4EE00604F
(31). I.Z. Ismagilov, E.V. Matus, V.S. Popkova, V.V. Kuznetsov, V.A. Ushakov, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 622–629. Crossref DOI: https://doi.org/10.1134/S0023158417050068
(32). A. Shubin, I. Zilberberg, I. Ismagilov, E. Matus, M. Kerzhentsev, Z. Ismagilov, Mol. Catal. 445 (2018) 307–315. Crossref DOI: https://doi.org/10.1016/j.mcat.2017.11.039
(33). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, T.V. Larina, I.P. Prosvirin, R.M. Navarro, J.L.G. Fierro, G. Gerritsen, H.C.L. Abbenhuis, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 18 (2016) 93–110. Crossref DOI: https://doi.org/10.18321/ectj430
(34). I.Z. Ismagilov, E.V. Matus, S.D. Vasil’ev, V.V. Kuznetsov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 456–465. Crossref DOI: https://doi.org/10.1134/S0023158415040096
(35). I.Z. Ismagilov, E.V Matus, M.A. Kerzhentsev, I.P. Prosvirin, R.M. Navarro, J.L.G. Fierro, G. Gerritsen, E. Abbenhuis, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 17 (2015) 105–118. Crossref DOI: https://doi.org/10.18321/ectj201
(36). S. Lee, Methane and its Derivatives. CRC Press, New York, USA, 2019. p. 424.
(37). J.R. Rostrup-Nielsen, J. Catal. 31 (1973) 173– 199. Crossref DOI: https://doi.org/10.1016/0021-9517(73)90326-6
(38). V.S. Arutunov, O.V. Krylov, Oxidative Conversion of Methane, Nauka, Moscow, 1998.
(39). C.J. Liu, J. Ye, J. Jiang, Y. Pan, ChemCatChem 3 (2011) 529–541. Crossref DOI: https://doi.org/10.1002/cctc.201000358
(40). J.R. Rostrup-Nielsen, Catal. Today 71 (2002) 243–247. Crossref DOI: https://doi.org/10.1016/S0920-5861(01)00454-0
(41). N. Laosiripojana, S. Assabumrungrat, Appl. Catal. A Gen. 290 (2005) 200–211. Crossref DOI: https://doi.org/10.1016/j.apcata.2005.05.026
(42). F. Pompeo, N.N. Nichio, M.M.V.M. Souza, D.V. Cesar, O.A. Ferretti, M. Schmal, Appl. Catal. A Gen. 316 (2007) 175–183. Crossref DOI: https://doi.org/10.1016/j.apcata.2006.09.007
(43). K.C. Mondal, V.R. Choudhary, U.A. Joshi, Appl. Catal. A Gen. 316 (2007) 47–52. Crossref DOI: https://doi.org/10.1016/j.apcata.2006.09.016
(44). T. Utaka, S.A. Al-Drees, J. Ueda, Y. Iwasa, T. Takeguchi, R. Kikuchi, K. Eguchi, Appl. Catal. A Gen. 247 (2003) 125–131. Crossref DOI: https://doi.org/10.1016/S0926-860X(03)00129-7
(45). F. Mueller-Langer, E. Tzimas, M. Kaltschmitt, S. Peteves, Int. J. Hydrogen Energ. 32 (2007) 3797– 3810. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2007.05.027
(46). N.Z. Muradov, T.N. Veziroǧlu, Int. J. Hydrogen Energ. 33 (2008) 6804–6839. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2008.08.054
(47). M. Wietschel, M. Ball. The Hydrogen Economy Opportunities and Challenges, 2009, 613–639. Crossref DOI: https://doi.org/10.1017/CBO9780511635359.022
(48). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, M.A. Kerzhentsev, S.A. Yashnik, I.P. Prosvirin, N. Mota, R.M. Navarro, J.L.G. Fierro, Z.R. Ismagilov, Int. J. Hydrogen Energ. 39 (2014) 20992–21006. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.10.044
(49). M.C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R.M. Navarro, J.L.G. Fierro, Catal. Today 171 (2011) 15–23. Crossref DOI: https://doi.org/10.1016/j.cattod.2011.02.028
(50). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394–402. Crossref DOI: https://doi.org/10.1134/S0023158415030064
(51). Z.R. Ismagilov, E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, S.A. Yashnik, V.A. Ushakov, M.A. Kerzhentsev, Catal. Today 323 (2019) 166–182. Crossref DOI: https://doi.org/10.1016/j.cattod.2018.06.035
(52). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, G. Gerritsen, H.C.L. Abbenhuis, Z.R. Ismagilov, Eurasian Chem.- Technol. J. 19 (2017) 3–16. Crossref DOI: https://doi.org/10.18321/ectj497
(53). T.V. Choudhary, E. Aksoylu, D.W. Goodman, Catal. Rev. Sci. Eng. 45 (2003) 151–203. Crossref DOI: https://doi.org/10.1081/CR-120017010
(54). F. Jiao, J.J. Li, X. Pan, J. Xiao, H. Li, H. Ma, M. Wei, Y. Pan, Z. Zhou, M. Li, S. Miao, J.J. Li, Y. Zhu, D. Xiao, T. He, J. Yang, F. Qi, Q. Fu, X. Bao, Science 351 (2016) 1065–1068. Crossref DOI: https://doi.org/10.1126/science.aaf1835
(55). M. Wang, T. Zhao, M. Li, H. Wang, RSC Adv. 7 (2017) 41847–41854. Crossref DOI: https://doi.org/10.1039/C7RA08422F
(56). L.P.R. Profeti, J.A.C. Dias, J.M. Assaf, E.M. Assaf, J. Power Sources 190 (2009) 525–533. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2008.12.104
(57). D. Li, Y. Nakagawa, K. Tomishige, Appl. Catal. A Gen. 408 (2011) 1–24. Crossref DOI: https://doi.org/10.1016/j.apcata.2011.09.018
(58). U. Menon, M. Rahman, S.J. Khatib, Appl. Catal. A Gen. 608 (2020) 117870. Crossref DOI: https://doi.org/10.1016/j.apcata.2020.117870
(59). D. Sun, Y. Du, Z. Wang, J. Zhang, Y. Li, J. Li, L. Kou, C. Li, J. Li, H. Feng, J. Lu, Int. J. Hydrogen Energ. 45 (2020) 16421–16431. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.04.126
(60). V. Ramasubramanian, H. Ramsurn, G.L. Price, Int. J. Hydrogen Energ. 45 (2020) 12026–12036. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.02.170
(61). S. Chen, J. Zaffran, B. Yang, ACS Catal. 10 (2020) 3074–3083. Crossref DOI: https://doi.org/10.1021/acscatal.9b04429
(62). O. Mohan, Shambhawi, A.A. Lapkin, S.H. Mushrif, Catal. Sci. Technol. 10 (2020) 6628– 6643. Crossref DOI: https://doi.org/10.1039/D0CY00939C
(63). G.E. Ergazieva, M.M. Telbayeva, A.N. Popova, Z.R. Ismagilov, K. Dossumov, L.K. Myltykbayeva, V.G. Dodonov, S.A. Sozinov, A.I. Niyazbayeva, Chem. Pap. 75 (2021) 2765– 2774. Crossref DOI: https://doi.org/10.1007/s11696-021-01516-y
(64). E.V. Matus, I.Z. Ismagilov, S.A. Yashnik, V.A. Ushakov, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, Int. J. Hydrogen Energ. 45 (2020) 33352–33369. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.09.011
(65). D. Ma, W. Zhang, Y. Shu, X. Liu, Y. Xu, X. Bao, Catal. Lett. 66 (2000) 155–160. Crossref DOI: https://doi.org/10.1023/A:1019099607029
(66). F. Solymosi, J. Cserényi, A. Szöke, T. Bánsági, A. Oszkó, J. Catal. 165 (1997) 150–161. Crossref DOI: https://doi.org/10.1006/jcat.1997.1478
(67). Y. Xu, S. Liu, X. Guo, L. Wang, M. Xie, Catal. Lett. 30 (1995) 135–149. Crossref DOI: https://doi.org/10.1007/BF00813680
(68). X. Liu, Y. Xu, S-T. Wong, L. Wang, L. Qiu, N. Yang, J. Mol. Catal. A Chem. 120 (1997) 257– 265. Crossref DOI: https://doi.org/10.1016/S1381-1169(96)00427-X
(69). Y. Xu, Y. Shu, S. Liu, J. Huang, X. Guo, Catal. Lett. 35 (1995) 233–243. Crossref DOI: https://doi.org/10.1007/BF00807179
(70). V. Ramasubramanian, H. Ramsurn, G.L. Price, J. Energy Chem. 34 (2019) 20–32. Crossref DOI: https://doi.org/10.1016/j.jechem.2018.09.018
(71). A. López-Martín, A. Caballero, G. Colón, Mol. Catal. 486 (2020) 110787. Crossref DOI: https://doi.org/10.1016/j.mcat.2020.110787
(72). S.J. Han, S.K. Kim, A. Hwang, S. Kim, D.Y. Hong, G. Kwak, K.W. Jun, Y.T. Kim, Appl. Catal. B Environ. 241 (2019) 305–318. Crossref DOI: https://doi.org/10.1016/j.apcatb.2018.09.042
(73). B.M. Weckhuysen, D. Wang, M.P. Rosynek, J.H. Lunsford, J. Catal. 175 (1998) 338–346. Crossref DOI: https://doi.org/10.1006/jcat.1998.2010
(74). W. Ding, S. Li, G.D. Meitzner, E. Iglesia, J. Phys. Chem. B 105 (2001) 506–513. Crossref DOI: https://doi.org/10.1021/jp0030692
(75). L. Chen, J. Lin, H.C. Zeng, K.L. Tan, Catal. Commun. 2 (2001) 201–206. Crossref DOI: https://doi.org/10.1016/S1566-7367(01)00032-2
(76). O.V. Sedel’nikova, A.A. Stepanov, V.I. Zaikovskii, L.L. Korobitsyna, A.V. Vosmerikov, Kinet. Catal. 58 (2017) 51–57. Crossref DOI: https://doi.org/10.1134/S0023158417010074
(77). M. Nagai, T. Nishibayashi, S. Omi, Appl. Catal. A-Gen. 253 (2003) 101–112. Crossref DOI: https://doi.org/10.1016/S0926-860X(03)00529-5
(78). H. Liu, X. Bao, Y. Xu, J. Catal. 239 (2006) 441– 450. Crossref DOI: https://doi.org/10.1016/j.jcat.2006.02.018
(79). D. Ma, Y. Shu, X. Bao, Y. Xu, J. Catal. 189 (2000) 314–325. Crossref DOI: https://doi.org/10.1006/jcat.1999.2704
(80). D. Wang, J.H. Lunsford, M.P. Rosynek, J. Catal. 169 (1997) 347–358. Crossref DOI: https://doi.org/10.1006/jcat.1997.1712
(81). H. Liu, W. Shen, X. Bao, Y. Xu, Appl. Catal. A Gen. 295 (2005) 79–88. Crossref DOI: https://doi.org/10.1016/j.apcata.2005.08.011
(82). S. Ma, X. Guo, L. Zhao, S. Scott, X. Bao, J. Energy Chem. 22 (2013) 1–20. Crossref DOI: https://doi.org/10.1016/S2095-4956(13)60001-7
(83). A.V. Vosmerikov, V.I. Zaikovskii, L.L. Korobitsyna, G.V. Echevskii, V.V. Kozlov, Y.E. Barbashin, S.P. Zhuravkov, Kinet. Catal. 50 (2009) 725–733. Crossref DOI: https://doi.org/10.1134/S0023158409050140
(84). A.V. Vosmerikov, V.I. Zaikovskii, L.L. Korobitsyna, V.V. Kozlov, N.V. Arbuzova, S.P. Zhuravkov, Kinet. Catal. 52 (2011) 427–433. Crossref DOI: https://doi.org/10.1134/S0023158411030190
(85). A.V. Vosmerikov, L.L. Korobitsyna, V.I. Zaikovskii, J. Chem. Eng. Chem. Res. 1 (2014) 205–212.
(86). S. Burns, J.S.J. Hargreaves, P. Pal, K.M. Parida, S. Parija, Catal. Today 114 (2006) 383–387. Crossref DOI: https://doi.org/10.1016/j.cattod.2006.02.030
(87). V. Abdelsayed, D. Shekhawat, M.W. Smith, Fuel 139 (2015) 401–410. Crossref DOI: https://doi.org/10.1016/j.fuel.2014.08.064
(88). V. Fila, M. Bernauer, B. Bernauer, Z. Sobalik, Catal. Today 256 (2015) 269–275. Crossref DOI: https://doi.org/10.1016/j.cattod.2015.02.035
(89). T. Kubota, N. Oshima, Y. Nakahara, M. Yanagimoto, Y. Okamoto, J. Jpn. Petrol. Inst. 49 (2006) 127–133. Crossref DOI: https://doi.org/10.1627/jpi.49.127
(90). S. Qi, B. Yang, Catal. Today 98 (2004) 639–645. Crossref DOI: https://doi.org/10.1016/j.cattod.2004.09.049
(91). A.K. Aboul-Gheit, A.E. Awadallah, A.A. Aboul- Enein, A.-L.H. Mahmoud, Fuel 90 (2011) 3040– 3046. Crossref DOI: https://doi.org/10.1016/j.fuel.2011.05.010
(92). M.V. Luzgin, V.A. Rogov, S.S. Arzumanov, A. V. Toktarev, A.G. Stepanov, V.N. Parmon, Catal. Today 144 (2009) 265–272. Crossref DOI: https://doi.org/10.1016/j.cattod.2008.08.043
(93). B. Liu, Y. Yang, A. Sayari, Appl. Catal. A Gen. 214 (2001) 95–102. Crossref DOI: https://doi.org/10.1016/S0926-860X(01)00470-7
(94). B.S. Liu, L. Jiang, H. Sun, C.T. Au, Appl. Surf. Sci. 253 (2007) 5092–5100. Crossref DOI: https://doi.org/10.1016/j.apsusc.2006.11.031
(95). Y. Zhang, D. Wang, J. Fei, X. Zheng, Aust. J. Chem. 55 (2002) 531–534. Crossref DOI: https://doi.org/10.1071/CH01170
(96). M.W. Ngobeni, A.F. Carley, M.S. Scurrell, C.P. Nicolaides, J. Mol. Catal. A Chem. 305 (2009) 40–46. Crossref DOI: https://doi.org/10.1016/j.molcata.2008.10.047
(97). A.K. Aboul-Gheit, A.E. Awadallah, S.M. El- Kossy, A.-L.H. Mahmoud, J. Nat. Gas Chem. 17 (2008) 337–343. Crossref DOI: https://doi.org/10.1016/S1003-9953(09)60005-0
(98). L. Wang, Y. Xu, S.-T. Wong, W. Cui, X. Guo, Appl. Catal. A Gen. 152 (1997) 173–182. Crossref DOI: https://doi.org/10.1016/S0926-860X(96)00366-3
(99). R. Kojima, S. Kikuchi, H. Ma, J. Bai, M. Ichikawa, Catal. Lett. 110 (2006) 15–21. Crossref DOI: https://doi.org/10.1007/s10562-006-0087-x
(100). Y. Shu, Y. Xu, S.-T. Wong, L. Wang, X. Guo, J. Catal. 170 (1997) 11–19. Crossref DOI: https://doi.org/10.1006/jcat.1997.1726
(101). A. Szöke, F. Solymosi, Appl. Catal. A Gen. 142 (1996) 361–374. Crossref DOI: https://doi.org/10.1016/0926-860X(96)00085-3
(102). H. Wang, Z. Liu, J. Schen, H. Liu, J. Zhang, Catal. Commun. 6 (2005) 343–346. Crossref DOI: https://doi.org/10.1016/j.catcom.2005.02.008
(103). L. Chen, L. Lin, Z. Xu, T. Zhang, X. Li, Catal. Lett. 39 (1996) 169–172. Crossref DOI: https://doi.org/10.1007/BF00805578
(104). P.D. Sily, F.B. Noronha, F.B. Passos, J. Nat. Gas Chem. 15 (2006) 82–86. Crossref DOI: https://doi.org/10.1016/S1003-9953(06)60012-1
(105). S. Majhi, P. Mohanty, H. Wang, K.K. Pant, J. Energy Chem. 22 (2013) 543–554. Crossref DOI: https://doi.org/10.1016/S2095-4956(13)60071-6
(106). S. Li, C. Zhang, Q. Kan, D. Wang, T. Wu, L. Lin, Appl. Catal. A Gen. 187 (1999) 199–206. Crossref DOI: https://doi.org/10.1016/S0926-860X(99)00231-8
(107). R. Baker, J. Catal. 26 (1972) 51–62. Crossref DOI: https://doi.org/10.1016/0021-9517(72)90032-2
(108). V.I. Zaikovskii, V.V. Chesnokov, R.A. Buyanov, L.M. Plyasova, Kinet. Catal. 41 (2000) 538–545. Crossref DOI: https://doi.org/10.1007/BF02756072
(109). V.I. Zaikovskii, A.V. Vosmerikov, V.F. Anufrienko, L.L. Korobitsyna, E.G. Kodenev, G. V. Echevskii, N.T. Vasenin, S.P. Zhuravkov, Z.R. Ismagilov, V.N. Parmon, Dokl. Phys. Chem. 404 (2005) 201–204. Crossref DOI: https://doi.org/10.1007/s10634-005-0060-1
(110). V.I. Zaikovskii, A.V. Vosmerikov, V.F. Anufrienko, L.L. Korobitsyna, E.G. Kodenev, G.V. Echevskii, N.T. Vasenin, S.P. Zhuravkov, E.V. Matus, Z.R. Ismagilov, V.N. Parmon, Kinet. Catal. 47 (2006) 389–394. Crossref DOI: https://doi.org/10.1134/S0023158406030104
(111). B. Li, S. Li, N. Li, H. Chen, W. Zhang, X. Bao, B. Lin, Microp. Mesopor. Mat. 88 (2006) 244– 253. Crossref DOI: https://doi.org/10.1016/j.micromeso.2005.09.016
(112). S. Li, D. Ma, Q. Kan, P. Wu, Y. Peng, C. Zhang, M. Li, Y. Fu, J. Shen, T. Wu, X. Bao, React. Kinet. Catal. Lett. 70 (2000) 349–356. Crossref DOI: https://doi.org/10.1023/A:1010309521261
(113). Y. Xu, W. Liu, S.-T. Wong, L. Wang, X. Guo, Catal. Lett. 40 (1996) 207–214. Crossref DOI: https://doi.org/10.1007/BF00815284
(114). S. De, J. Zhang, R. Luque, N. Yan, Energy Environ. Sci. 9 (2016) 3314–3347. Crossref DOI: https://doi.org/10.1039/C6EE02002J
(115). V. Dal Santo, A. Gallo, A. Naldoni, M. Guidotti, R. Psaro, Catal. Today 197 (2012) 190–205. Crossref DOI: https://doi.org/10.1016/j.cattod.2012.07.037
(116). Y.H. (Cathy) Chin, D.L. King, H.S. Roh, Y. Wang, S.M. Heald, J. Catal. 244 (2006) 153– 162. Crossref DOI: https://doi.org/10.1016/j.jcat.2006.08.016
(117). C. Xie, Y. Chen, Y. Li, X. Wang, C. Song, Appl. Catal. A Gen. 390 (2010) 210–218. Crossref DOI: https://doi.org/10.1016/j.apcata.2010.10.012
(118). E.C. Luna, A.M. Becerra, M.I. Dimitrijewits, React. Kinet. Catal. Lett. 67 (1999) 247–252. Crossref DOI: https://doi.org/10.1007/BF02475767
(119). K. Yoshida, N. Begum, S. Ito, K. Tomishige, Appl. Catal. A Gen. 358 (2009) 186–192. Crossref DOI: https://doi.org/10.1016/j.apcata.2009.02.025
(120). J.S. Lisboa, L.E. Terra, P.R.J. Silva, H. Saitovitch, F.B. Passos, Fuel Process. Technol. 92 (2011) 2075–2082. Crossref DOI: https://doi.org/10.1016/j.fuproc.2011.06.011
(121). I.Z. Ismagilov, E. V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A Gen. 481 (2014) 104–115. Crossref DOI: https://doi.org/10.1016/j.apcata.2014.04.042
(122). M.A. Mashkovtsev, A.K. Khudorozhkov, I.E. Beck, A.V. Porsin, I.P. Prosvirin, V.N. Rychkov, V.I. Bukhtiyarov, Catal. Ind. 3 (2011) 350–357. Crossref DOI: https://doi.org/10.1134/S2070050411040052
(123). L. Ma, L. Yan, A.-H. Lu, Y. Ding, RSC Adv. 8 (2018) 8152–8163. Crossref DOI: https://doi.org/10.1039/C7RA12891F
(124). X. Yu, F. Zhang, W. Chu, RSC Adv. 6 (2016) 70537–70546. Crossref DOI: https://doi.org/10.1039/C6RA12335J
(125). J. Xu, W. Zhou, Z. Li, J. Wang, J. Ma, Int. J. Hydrogen Energ. 34 (2009) 6646–6654. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2009.06.038
(126). S.C. Dantas, J.C. Escritori, R.R. Soares, C.E. Hori, Chem. Eng. J. 156 (2010) 380–387. Crossref DOI: https://doi.org/10.1016/j.cej.2009.10.047
(127). N.N. Nichio, M.L. Casella, G.F. Santori, E.N. Ponzi, O.A. Ferretti, Catal. Today 62 (2000) 231–240. Crossref DOI: https://doi.org/10.1016/S0920-5861(00)00424-7
(128). Z. Hou, O. Yokota, T. Tanaka, T. Yashima, Appl. Surf. Sci. 233 (2004) 58–68. Crossref DOI: https://doi.org/10.1016/j.apsusc.2004.03.223
(129). E. Nikolla, J. Schwank, S. Linic, J. Catal. 250 (2007) 85–93. Crossref DOI: https://doi.org/10.1016/j.jcat.2007.04.020
(130). S. Saadi, B. Hinnemann, S. Helveg, C.C. Appel, F. Abild-Pedersen, J.K. Nørskov, Surf. Sci. 603 (2009) 762–770. Crossref DOI: https://doi.org/10.1016/j.susc.2009.01.018
(131). F. Yang, D. Liu, H. Wang, X. Liu, J. Han, Q. Ge, X. Zhu, J. Catal. 349 (2017) 84–97. Crossref DOI: https://doi.org/10.1016/j.jcat.2017.01.001
(132). Z.O. Malaibari, A. Amin, E. Croiset, W. Epling, Int. J. Hydrogen Energ. 39 (2014) 10061– 10073. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.03.169
(133). A. Erhan Aksoylu, Z.I. Önsan, Appl. Catal. A Gen. 168 (1998) 399–407. Crossref DOI: https://doi.org/10.1016/S0926-860X(97)00370-0
(134). B.S. Çaǧlayan, Z.I. Önsan, A.E. Aksoylu, Catal. Lett. 102 (2005) 63–67. Crossref DOI: https://doi.org/10.1007/s10562-005-5204-8
(135). M. Sharifi, M. Haghighi, F. Rahmani, S. Karimipour, J. Nat. Gas Sci. Eng. 21 (2014) 993–1004. Crossref DOI: https://doi.org/10.1016/j.jngse.2014.10.030
(136). J.A.C. Dias, J.M. Assaf, Appl. Catal. A Gen. 334 (2008) 243–250. Crossref DOI: https://doi.org/10.1016/j.apcata.2007.10.012
(137). M. Sankar, N. Dimitratos, P.J. Miedziak, P.P. Wells, C.J. Kiely, G.J. Hutchings, Chem. Soc. Rev. 41 (2012) 8099–8139. Crossref DOI: https://doi.org/10.1039/c2cs35296f
(138). D. Li, T. Shishido, Y. Oumi, T. Sano, K. Takehira, Appl. Catal. A Gen. 332 (2007) 98– 109. Crossref DOI: https://doi.org/10.1016/j.apcata.2007.08.008
(139). T. Miyata, D. Li, M. Shiraga, T. Shishido, Y. Oumi, T. Sano, K. Takehira, Appl. Catal. A Gen. 310 (2006) 97–104. Crossref DOI: https://doi.org/10.1016/j.apcata.2006.05.022
(140). L.P.R. Profeti, E.A. Ticianelli, E.M. Assaf, I. De Quı, C. Sp, Int. J. Hydrogen Energ. 34 (2009) 5049–5060. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2009.03.050
(141). D. Li, Y. Nakagawa, K. Tomishige, Chinese J. Catal. 33 (2012) 583–594. Crossref DOI: https://doi.org/10.1016/S1872-2067(11)60359-8
(142). Y. Mukainakano, K. Yoshida, K. Okumura, K. Kunimori, K. Tomishige, Catal. Today 132 (2008) 101–108. Crossref DOI: https://doi.org/10.1016/j.cattod.2007.12.031
(143). Y. Mukainakano, K. Yoshida, S. Kado, K. Okumura, K. Kunimori, K. Tomishige, Chem. Eng. Sci. 63 (2008) 4891–4901. Crossref DOI: https://doi.org/10.1016/j.ces.2007.06.003
(144). K. Yoshida, K. Okumura, T. Miyao, S. Naito, S. Ito, K. Kunimori, K. Tomishige, Appl. Catal. A Gen. 351 (2008) 217–225. Crossref DOI: https://doi.org/10.1016/j.apcata.2008.09.014
(145). J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon, Catal. Today 63 (2000) 71–85. Crossref DOI: https://doi.org/10.1016/S0920-5861(00)00447-8
(146). B. Li, R. Watanabe, K. Maruyama, K. Kunimori, K. Tomishige, Catal. Today 104 (2005) 7–17. Crossref DOI: https://doi.org/10.1016/j.cattod.2005.03.037
(147). M.A. Kerzhentsev, E.V. Matus, I.A. Rundau, V.V. Kuznetsov, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 601–609. Crossref DOI: https://doi.org/10.1134/S002315841705010X
(148). J. Requies, M.A. Cabrero, V.L. Barrio, M.B. Güemez, J.F. Cambra, P.L. Arias, F.J. Pérez- Alonso, M. Ojeda, M.A. Peña, J.L.G. Fierro, Appl. Catal. A Gen. 289 (2005) 214–223. Crossref DOI: https://doi.org/10.1016/j.apcata.2005.05.002
(149). K. Rida, M.A. Peña, E. Sastre, A. Martínez- Arias, J. Rare Earth. 30 (2012) 210–216. Crossref DOI: https://doi.org/10.1016/S1002-0721(12)60025-8
(150). Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Material. Research Bull. 41 (2006) 1565–1570. Crossref DOI: https://doi.org/10.1016/j.materresbull.2005.11.017
(151). C.R.B. Silva, L. Da Conceição, N.F.P. Ribeiro, M.M.V.M. Souza, Catal. Commun. 12 (2011) 665–668. Crossref DOI: https://doi.org/10.1016/j.catcom.2010.12.025
(152). R.D. Shannon, Acta Cryst. 32 (1976) 751–767. Crossref DOI: https://doi.org/10.1107/S0567739476001551
(153). A. Vamvakeros, S.D.M. Jacques, M. Di Michiel, D. Matras, V. Middelkoop, I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, J. Drnec, P. Senecal, A.M. Beale, Nat. Commun. 9 (2018) 4751. Crossref DOI: https://doi.org/10.1038/s41467-018-07046-8
(154). X. Liu, B. Cheng, J. Hu, H. Qin, M. Jiang, Sensor. Actuat. B Chem. 129 (2008) 53–58. Crossref DOI: https://doi.org/10.1016/j.snb.2007.07.102
(155). H. Provendier, C. Petit, C. Estournès, S. Libs, A. Kiennemann, Appl. Catal. A Gen. 180 (1999) 163–173. Crossref DOI: https://doi.org/10.1016/S0926-860X(98)00343-3
(156). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Catal. Today 210 (2013) 10–18. Crossref DOI: https://doi.org/10.1016/j.cattod.2012.12.007
(157). D. Hufschmidt, L.F. Bobadilla, F. Romero- Sarria, M.A. Centeno, J.A. Odriozola, M. Montes, E. Falabella, Catal. Today 149 (2010) 394–400. Crossref DOI: https://doi.org/10.1016/j.cattod.2009.06.002