Steam/CO2 Reforming of Methane Over Impregnated Ni/CeO2 Catalysts: Effect of Sample Composition on Their Activity and Stability

Authors

  • Е.V. Matus Boreskov Institute of Catalysis, Siberian Branch, RAS, 5, Ac. Lavrentieva ave., Novosibirsk, Russia
  • O.B. Sukhova Boreskov Institute of Catalysis, Siberian Branch, RAS, 5, Ac. Lavrentieva ave., Novosibirsk, Russia
  • I.Z. Ismagilov Boreskov Institute of Catalysis, Siberian Branch, RAS, 5, Ac. Lavrentieva ave., Novosibirsk, Russia
  • V.A. Ushakov Boreskov Institute of Catalysis, Siberian Branch, RAS, 5, Ac. Lavrentieva ave., Novosibirsk, Russia
  • S.A. Yashnik Boreskov Institute of Catalysis, Siberian Branch, RAS, 5, Ac. Lavrentieva ave., Novosibirsk, Russia
  • M.A. Kerzhentsev Boreskov Institute of Catalysis, Siberian Branch, RAS, 5, Ac. Lavrentieva ave., Novosibirsk,
  • Z.R. Ismagilov Boreskov Institute of Catalysis, Siberian Branch, RAS, 5, Ac. Lavrentieva ave., Novosibirsk, Russia; Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj1432

Keywords:

Ni catalyst, Ceria, Hydrogen, Syngas, Bi-reforming, Methane, Biogas

Abstract

Steam/CO2 reforming of methane was studied at 600–900 °C, molar ratio CO2/H2O 0–2 and contact time 0.04–0.15 s over impregnated Ni/CeO2 catalysts of various compositions. It has been established that with an increase in the Ni content from 2 to 10 wt.%, both the conversion of reactants (X) and the yield of products (Y) increase in the range XCH4 25→80%, XCO2 35→72%, YH2 30→80%, YCO 30→75% (at 750 °C). With a further increase in the nickel content to 15%, the process parameters changed slightly, reaching a plateau. Higher nickel content (10 vs. 2 wt.%) ensures stable operation of the catalyst over time. The functional performance of the catalysts was correlated with physicochemical properties of as-synthesized, activated and spent samples using X-ray fluorescence analysis, low-temperature nitrogen adsorption, X-ray diffraction analysis, electron microscopy, and thermal analysis. It was shown that the Ni content affects the thermal stability, the textural, structural and redox characteristics of the samples. The 10% Ni/CeO2 catalyst was chosen as the optimal one due to higher H2 productivity, and sufficient resistance to sintering and coking. This sample provides a stable hydrogen yield of 85% in steam/CO2 reforming of methane at 800 °C, CO2/H2O = 2 and a contact time 0.15 s.

References

(1). J. van de Loosdrecht, J.W. (Hans) Niemantsverdriet. 5.4 Synthesis Gas to Hydrogen, Methanol, and Synthetic Fuels, in: Chemical Energy Storage, 2012, pp. 443–458. Crossref

(2). G. Glivin, N. Kalaiselvan, V. Mariappan, M. Premalatha, P.C. Murugan, J. Sekhar, Fuel 302 (2021) 121153. Crossref

(3). R. Salehi, S. Chaiprapat, Environ. Eng. Res. 27 (2021) 210109. Crossref

(4). E. le Saché, A. Alvarez Moreno, T.R. Reina, Front. Chem. 9 (2021) 672419. Crossref

(5). X. Cai, Y.H. Hu, Energy Sci. Eng. 7 (2019) 4–29. Crossref

(6). H. Zhang, Z. Sun, Y.H. Hu, Renew. Sustain. Energy Rev. 149 (2021) 111330. Crossref

(7). X. Gao, J. Li, M. Zheng, S. Cai, J. Zhang, S. Askari, N. Dewangan, J. Ashok, S. Kawi, Process Saf. Environ. Prot. 156 (2021) 598– 616. Crossref

(8). D. Pham Minh, X.H. Pham, T.J. Siang, D.V.N. Vo, Appl. Catal. A Gen. 621 (2021) 118202. Crossref

(9). A.S. Farooqi, M. Yusuf, N.A. Mohd Zabidi, R. Saidur, K. Sanaullah, A.S. Farooqi, A. Khan, B. Abdullah, Int. J. Hydrogen Energy 46 (2021) 31024–31040. Crossref

(10). U.S. Mohanty, M. Ali, M.R. Azhar, A. Al- Yaseri, A. Keshavarz, S. Iglauer, Int. J. Hydrogen Energy 46 (2021) 32809–32845. Crossref

(11). V.V. Nedolivko, G.O. Zasypalov, A.V. Vutolkina, P.A. Gushchin, V.A. Vinokurov, L.A. Kulikov, S.V. Egazar’yants, E.A. Karakhanov, A.L. Maksimov, A.P. Glotov, Russ. J. Appl. Chem. 93 (2020) 765–787. Crossref

(12). G.N. Mazo, O.A. Shlyakhtin, A.S. Loktev, A.G. Dedov, Russ. Chem. Bull. 68 (2019) 1949–1953. Crossref

(13). A. Vita, L. Pino, F. Cipitì, M. Laganà, V. Recupero, Fuel Process. Technol. 127 (2014) 47–58. Crossref

(14). R.O. da Fonseca, A.R. Ponseggi, R.C. Rabelo- Neto, R.C.C. Simões, L.V. Mattos, F.B. Noronha, J. CO2 Util. 57 (2022) 101880. Crossref

(15). J.M. García-Vargas, J.L. Valverde, A. De Lucas- Consuegra, B. Gómez-Monedero, P. Sánchez, F. Dorado, Appl. Catal. A Gen. 431–432 (2012) 49–56. Crossref

(16). D.M. Walker, S.L. Pettit, J.T. Wolan, J.N. Kuhn, Appl. Catal. A Gen. 445–446 (2012) 61–68. Crossref

(17). R. Kumar, K.K. Pant, Fuel Process. Technol. 210 (2020) 106559. Crossref

(18). C.E. Kozonoe, R.M. Brito Alves, M. Schmal, Fuel 281 (2020) 118749. Crossref

(19). A.V. Paladino Lino, C.B. Rodella, E.M. Assaf, J.M. Assaf, Int. J. Hydrogen Energy 45 (2020) 8418–8432. Crossref

(20). A.J. Majewski, J. Wood, Int. J. Hydrogen Energy 39 (2014) 12578–12585. Crossref

(21). J. Yoo, Y. Bang, S.J. Han, S. Park, J.H. Song, I.K. Song, J. Mol. Catal. A Chem. 410 (2015) 74–80. Crossref

(22). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, G. Gerritsen, H.C.L. Abbenhuis, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 19 (2017) 3–16. Crossref

(23). A.V.P. Lino, E.M. Assaf, J.M. Assaf, Catal. Today 289 (2017) 78–88. Crossref

(24). A.G. Dedov, A.S. Loktev, V.P. Danilov, O.N. Krasnobaeva, T.A. Nosova, I.E. Mukhin, A.E. Baranchikov, K.E. Yorov, M.A. Bykov, I.I. Moiseev, Pet. Chem. 60 (2020) 194–203. Crossref

(25). E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, V.A. Ushakov, O.A. Stonkus, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 610–621. Crossref

(26). C. Alvarez-Galvan, M. Melian, L. Ruiz-Matas, J.L. Eslava, R.M. Navarro, M. Ahmadi, B. Roldan Cuenya, J.L.G. Fierro, Front. Chem. 7 (2019). Crossref

(27). A.G. Dedov, A.S. Loktev, V.P. Danilov, O.N. Krasnobaeva, T.A. Nosova, I.E. Mukhin, A.E. Baranchikov, Kh.E. Yorov, M.A. Bykov, I.I. Moiseev, Pet. Chem. 59 (2019) 385–393. Crossref

(28). I.V. Zagaynov, A.S. Loktev, I.E. Mukhin, A.A. Konovalov, A.G. Dedov, Mendeleev Commun. 32 (2022) 129–131. Crossref

(29). J.M. García-Vargas, J.L. Valverde, J. Díez, P. Sánchez, F. Dorado, Appl. Catal. B Environ. 164 (2015) 316–323. Crossref

(30). Z.A. Fedorova, M.M. Danilova, V.I. Zaikovskii, Mater. Lett. 261 (2020) 127087. Crossref

(31). L. Pino, A. Vita, M. Laganà, V. Recupero, Appl. Catal. B Environ. 148–149 (2014) 91–105. Crossref

(32). Z.R. Ismagilov, E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, S.A. Yashnik, V.A. Ushakov, M.A. Kerzhentsev, Catal. Today 323 (2019) 166–182. Crossref

(33). V. Fedorova, M. Simonov, K. Valeev, Y. Bespalko, E. Smal, E. Sadovskaya, T. Krieger, A. Ishchenko, V. Sadykov, N. Eremeev, Energies 14 (2021) 2973. Crossref

(34). M.M. Danilova, Z.A. Fedorova, V.A. Kuzmin, V.I. Zaikovskii, A.V. Porsin, T.A. Krieger, Catal. Sci. Technol. 5 (2015) 2761–2768. Crossref

(35). A.F. Lucrédio, J.M. Assaf, E.M. Assaf, Fuel Process. Technol. 102 (2012) 124–131. Crossref

(36). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394– 402. Crossref

(37). Е.V. Matus, S.D. Vasil’ev, I.Z. Ismagilov, V.А. Ushakov, М.А. Kerzhentsev, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 403–411. Crossref

(38). U. Izquierdo, V.L. Barrio, J. Requies, J.F. Cambra, M.B. Güemez, P.L. Arias, Int. J. Hydrogen Energy 38 (2013) 7623–7631. Crossref

(39). I.Z. Ismagilov, A.V. Vosmerikov, L.L. Korobitsyna, E.V. Matus, M.A. Kerzhentsev, A.A. Stepanov, E.S. Mihaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 23 (2021) 147–168. Crossref

(40). M.A. Kerzhentsev, E.V. Matus, I.A. Rundau, V.V. Kuznetsov, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 601–622. Crossref

(41). Z. Ni, X. Djitcheu, X. Gao, J. Wang, H. Liu, Q. Zhang, Sci. Rep. 12 (2022) 5344. Crossref

(42). N. Wang, W. Qian, W. Chu, F. Wei, Catal. Sci. Technol. 6 (2016) 3594–3605. Crossref

(43). P.G. Lustemberg, Z. Mao, A. Salcedo, B. Irigoyen, M.V. Ganduglia-Pirovano, C.T. Campbell, ACS Catal. 11 (2021) 10604–10613. Crossref

(44). J. Deng, W. Chu, B. Wang, W. Yang, X.S. Zhao, Catal. Sci. Technol. 6 (2016) 851–862. Crossref

(45). Y. Lyu, J. Jocz, R. Xu, E. Stavitski, C. Sievers, ACS Catal. 10 (2020) 11235–11252. Crossref

(46). M.A. Kerzhentsev, E.V. Matus, I.Z. Ismagilov, V.A. Ushakov, O.A. Stonkus, T.V. Larina, G.S. Kozlova, P. Bharali, Z.R. Ismagilov, J. Struct. Chem. 58 (2017) 133–141. Crossref

(47). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, N. Mota, R.M. Navarro, S.A. Yashnik, I.P. Prosvirin, M.A. Kerzhentsev, Z.R. Ismagilov, J.L.G. Fierro, Appl. Catal. A Gen. 481 (2014) 104–115. Crossref

(48). E.V. Matus, A.S. Shlyakhtina, O.B. Sukhova, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, A.P. Nikitin, P. Bharali, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 60 (2019) 221–230. Crossref

(49). E.V. Matus, O.B. Sukhova, I.Z. Ismagilov, M.A. Kerzhentsev, L. Li, Z.R. Ismagilov, J. Phys. Conf. Ser. 1749 (2021) 012023. Crossref

(50). A. Löfberg, J. Guerrero-Caballero, T. Kane, A. Rubbens, L. Jalowiecki-Duhamel, Appl. Catal. B Environ. 212 (2017) 159–174. Crossref

(51). M.A. Kerzhentsev, E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, P. Bharali, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 20 (2018) 283–291. Crossref

(52). D. Vovchok, C.J. Guild, J. Llorca, R.M. Palomino, I. Waluyo, J.A. Rodriguez, S.L. Suib, S.D. Senanayake, Appl. Catal. A Gen. 567 (2018) 1–11. Crossref

(53). R. Murugan, G. Ravi, G. Vijayaprasath, S. Rajendran, M. Thaiyan, M. Nallappan, M. Gopalan, Y. Hayakawa, Phys. Chem. Chem. Phys. 19 (2017) 4396–4404. Crossref

(54). A. Romero-Núñez, G. Díaz, RSC Adv. 5 (2015) 54571–54579. Crossref

(55). Anushree, S. Kumar, C. Sharma, Catal. Sci. Technol. 6 (2016) 2101–2111. Crossref

(56). Z. Liu, D.C. Grinter, P.G. Lustemberg, T.D. Nguyen-Phan, Y. Zhou, S. Luo, I. Waluyo, E.J. Crumlin, D.J. Stacchiola, J. Zhou, J. Carrasco, H.F. Busnengo, M.V. Ganduglia-Pirovano, S.D. Senanayake, J.A. Rodriguez, Angew. Chemie Int. Ed. 55 (2016) 7455–7459. Crossref

(57). E.V. Matus, L.B. Okhlopkova, O.B. Sukhova, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, J. Nanoparticle Res. 21 (2019). Crossref

(58). E.V. Matus, I.Z. Ismagilov, V.A. Ushakov, A.P. Nikitin, O.A. Stonkus, E.Y. Gerasimov, M.A. Kerzhentsev, P. Bharali, Z.R. Ismagilov, J. Struct. Chem. 61 (2020) 1080–1089. Crossref

(59). L. Wu, H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y. Zhu, D.O. Welch, M. Suenaga, Phys. Rev. B 69 (2004) 125415. Crossref

(60). W.J. Jang, D.W. Jeong, J.O. Shim, H.M. Kim, H.S. Roh, I.H. Son, S.J. Lee, Appl. Energ. 173 (2016) 80–91. Crossref

(61). V.M. Gonzalez-DelaCruz, J.P. Holgado, R. Pereñíguez, A. Caballero, J. Catal. 257 (2008) 307–314. Crossref

(62). A. Khaleel, Weifeng Li, K.J. Klabunde, Nanostructured Materials 12 (1999) 463–466. Crossref

(63). Z.R. Ismagilov, E.V. Matus, L. Li, Phys. Usp. (2022). Crossref

(64). H.S. Roh, K.Y. Koo, W.L. Yoon, Catal. Today 146 (2009) 71–75. Crossref

(65). P. Li, Y.H. Park, D.J. Moon, N.C. Park, Y.C. Kim, J. Nanosci. Nanotechnol. 16 (2016) 1562– 1566. Crossref

(66). T.J. Siang, T.L.M. Pham, N. Van Cuong, P.T.T. Phuong, N.H.H. Phuc, Q.D. Truong, D.V.N. Vo, Micropor. Mesopor. Mater. 262 (2018) 122– 132. Crossref

(67). I. Wysocka, A. Mielewczyk-Gryń, M. Łapiński, B. Cieślik, A. Rogala, Int. J. Hydrogen Energy 46 (2021) 3847–3864. Crossref

(68). T. Sukonket, A. Khan, B. Saha, H. Ibrahim, S. Tantayanon, P. Kumar, R. Idem, Energy Fuels 25 (2011) 864–877. Crossref

(69). Z. Zhao, P. Ren, W. Li, B. Miao, Int. J. Hydrogen Energy 42 (2017) 6598–6609. Crossref

(70). S. Agarwal, B.L. Mojet, L. Lefferts, A.K. Datye, Ceria, Nanoshapes-Structural and Catalytic Properties, in: Catalysis by Materials with Well- Defined Structures, 2015, pp. 31–70. Crossref

Downloads

Published

2022-10-10

How to Cite

Matus Е., Sukhova, O., Ismagilov, I., Ushakov, V., Yashnik, S., Kerzhentsev, M., & Ismagilov, Z. (2022). Steam/CO2 Reforming of Methane Over Impregnated Ni/CeO2 Catalysts: Effect of Sample Composition on Their Activity and Stability. Eurasian Chemico-Technological Journal, 24(3), 191–202. https://doi.org/10.18321/ectj1432

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>