Genesis and Properties of MOx/CNTs (M = Ce, Cu, Mo) Catalysts for Aerobic Oxidative Desulfurization of a Model Diesel Fuel

Authors

  • Е.V. Matus The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • S.A. Yashnik The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • A.V. Salnikov The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • L.M. Khitsova The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • A.N. Popova The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • A.P. Nikitin The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • S.A. Sozinov The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • Z.R. Ismagilov The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj1130

Keywords:

metal-carbon catalyst, dibenzothiophene, diesel fuel, oxidative desulfurization

Abstract

Aerobic oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts (M = Ce, Cu, Mo) was studied to develop innovative technology for cleaning motor fuels to EURO-5 standard. It was shown that the thermal stability of catalysts improves in the following order of metal Сu < Сe < Мо. The disordering of the carbon matrix of support increases in the next row of M: Mo < Ce < Cu, which is accompanied by an increase in the specific surface area of the samples (40 → 105 m2/g). The forms of stabilization of the active component (CeO2, CuO/Cu2O/ Cu, or MoO3/MoO2) were revealed, indicating a partial reduction of the metal cations during the thermal decomposition of copper and molybdenum precursor compounds deposited on CNTs. In oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts at 150 °C the total conversion of dibenzothiophene increased in the next row of M: Се < Сu < Мо. It was found that at 150 °C over the optimum MoOx/CNTs catalyst the highest dibenzothiophene conversion 95–99% is observed. It was assumed that the high activity of MoOx/CNTs is associated with both the oxidizing ability and the tendency of MoOx to chemosorption of sulfur compounds.

References

(1). Cleaning up the global on-road diesel fleet, (2016). URL

(2). B. Zhang. Chapter 1: Hydroprocessing and the Chemistry. Hydroprocessing Catalysts and Processes, 2018, pp. 1–56. Crossref

(3). Z. Chen, L. Ling, B. Wang, H. Fan, J. Shangguan, J. Mi, Appl. Surf. Sci. 387 (2016) 483–490. Crossref

(4). H. Zhu, X. Li, N. Shi, X. Ding, Z. Yu, W. Zhao, H. Ren, Y. Pan, Y. Liu, W. Guo, Catal. Sci. Technol. 11 (2021) 1615–1625. Crossref

(5). P. Wu, W. Zhu, B. Dai, Y. Chao, C. Li, H. Li, M. Zhang, W. Jiang, H. Li, Chem. Eng. J. 301 (2016) 123–131. Crossref

(6). N. Lv, L. Sun, L. Chen, Y. Li, J. Zhang, P. Wu, H. Li, W. Zhu, H. Li, Phys. Chem. Chem. Phys. 21 (2019) 21867–21874. Crossref

(7). L. Dai, Y. Wei, X. Xu, P. Wu, M. Zhang, C. Wang, H. Li, Q. Zhang, H. Li, W. Zhu, ChemCatChem 12 (2020) 1734–1742. Crossref

(8). J. Xiao, L. Wu, Y. Wu, B. Liu, L. Dai, Z. Li, Q. Xia, H. Xi, Appl. Energ. 113 (2014) 78–85. Crossref

(9). S.A. Yashnik, M.A. Kerzhentsev, A.V. Salnikov, Z.R. Ismagilov, A. Bourane, O.R. Koseoglu, Kinet. Catal. 56 (2015) 466–475. Crossref

(10). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, A.A. Saraev, V.V. Kaichev, L.M. Khitsova, Z.R. Ismagilov, J. Yamin, O.R. Koseoglu, Kinet. Catal. 58 (2017) 58–72. Crossref

(11). Z.R. Ismagilov, M.A. Kerzhentsev, S.A. Yashnik, S.R. Khairulin, A. V. Salnikov, V.N. Parmon, A. Bourane, O.R. Koseoglu, Eurasian Chem.-Technol. J. 17 (2015) 119–128. Crossref

(12). H. Mohumed, S. Rahman, S.A. Imtiaz, Y. Zhang, ACS Omega 5 (2020) 8023–8031. Crossref

(13). X. Zeng, X. Xiao, Y. Li, J. Chen, H. Wang, Appl. Catal. B Environ. 209 (2017) 98–109. Crossref

(14). I. Shafiq, S. Shafique, P. Akhter, M. Ishaq, W. Yang, M. Hussain, J. Clean. Prod. 294 (2021) 125731. Crossref

(15). A. Rajendran, T.Y. Cui, H.X. Fan, Z.F. Yang, J. Feng, W.Y. Li, J. Mater. Chem. A. 8 (2020) 2246–2285. Crossref

(16). K.M. Dooley, D. Liu, A.M. Madrid, F.C. Knopf, Appl. Catal. A Gen. 468 (2013) 143–149. Crossref

(17). E.A. Eseva, A.V. Akopyan, A.V. Anisimov, A.L. Maksimov, Pet. Chem. 60 (2020) 979–990. Crossref

(18). Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, A.A. Hajji, O.R. Koseoglu, Catal. Rev. 53 (2011) 199–255. Crossref

(19). X. Bin Lim, W.-J. Ong, Nanoscale Horizons. 6 (2021) 588–633. Crossref

(20). J.T. Sampanthar, H. Xiao, J. Dou, T.Y. Nah, X. Rong, W.P. Kwan, Appl. Catal. B Environ. 63 (2006) 85–93. Crossref

(21). Y. Lu, Y. Wang, L. Gao, J. Chen, J. Mao, Q. Xue, Y. Liu, H. Wu, G. Gao, M. He, ChemSusChem 1 (2008) 302–306. Crossref

(22). X. Ma, A. Zhou, C. Song, Catal. Today. 123 (2007) 276–284. Crossref

(23). Q. Zhang, J. Zhang, H. Yang, Y. Dong, Y. Liu, L. Yang, D. Wei, W. Wang, L. Bai, H. Chen, Catal. Sci. Technol. 9 (2019) 2915–2922. Crossref

(24). C. Wang, Z. Chen, X. Yao, W. Jiang, M. Zhang, H. Li, H. Liu, W. Zhu, H. Li, RSC Adv. 7 (2017) 39383–39390. Crossref

(25). Y. Shi, G. Liu, B. Zhang, X. Zhang, Green Chem. 18 (2016) 5273–5279. Crossref

(26). F.L. Yu, C.Y. Liu, B. Yuan, C.X. Xie, S.T. Yu, Catal. Commun. 68 (2015) 49–52. Crossref

(27). M. Zhang, W. Liao, Y. Wei, C. Wang, Y. Fu, Y. Gao, L. Zhu, W. Zhu, H. Li, ACS Appl. Nano Mater. 4 (2021) 1085–1093. Crossref

(28). M. Shi, D. Zhang, X. Yu, Y. Li, X. Wang, W. Yang, Fuel Process. Technol. 160 (2017) 136– 142. Crossref

(29). Q. Gu, G. Wen, Y. Ding, K.H. Wu, C. Chen, D. Su, Green Chem. 19 (2017) 1175–1181. Crossref

(30). W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem. 16 (2014) 211–220. Crossref

(31). Q. Gu, Y. Lin, S. Heumann, D. Su, Chem. - Asian J. 12 (2017) 2876–2883. Crossref

(32). Y. Gao, Z. Lv, R. Gao, G. Zhang, Y. Zheng, J. Zhao, J. Hazard. Mater. 359 (2018) 258–265. Crossref

(33). O.Y. Podyacheva, A.N. Suboch, S.A. Yashnik, A.V. Salnikov, S.V. Cherepanova, L.S. Kibis, G.Y. Simenyuk, A.I. Romanenko, Z.R. Ismagilov, J. Struct. Chem. 62 (2021) 771–781. Crossref

(34). E. Pérez-Mayoral, V. Calvino-Casilda, E. Soriano, Catal. Sci. Technol. 6 (2016) 1265– 1291. Crossref

(35). B.N. Bhadra, N.A. Khan, S.H. Jhung, J. Mater. Chem. A. 7 (2019) 17823–17833. Crossref

(36). J. Chen, X. Wang, D. Wu, J. Zhang, Q. Ma, X. Gao, X. Lai, H. Xia, S. Fan, T.S. Zhao, Fuel 239 (2019) 44–52. Crossref

(37). Z.R. Ismagilov, E.V. Matus, O.S. Efimova, L.M. Khitsova, A.N. Popova, A.P. Nikitin, S.A. Sozinov, Eurasian Chem-Techol. J. 22 (2020) 81–88. Crossref

(38). E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, S.A. Sozinov, Z.R. Ismagilov, J. Phys. Conf. Ser. 1749 (2021). Crossref

(39). Z.R. Ismagilov, S.A. Yashnik, N.V. Shikina, E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, Eurasian Chem.-Techol. J. 21 (2019) 291–302. Crossref

(40). E.V. Matus, L.M. Khitsova, O.S. Efimova, S.A. Yashnik, N.V. Shikina, Z.R. Ismagilov, Eurasian Chem.-Techol. J. 21 (2019) 303–316. Crossref

(41). L.B. Okhlopkova, O.S. Efimova, L.M. Khitsova, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 566–575. Crossref

(42). D. Zhao, G. Zhang, L. Yan, L. Kong, H. Zheng, J. Mi, Z. Li, Catal. Sci. Technol. 10 (2020) 2615–2626. Crossref

(43). M.V.C. Sekhar, Stud. Surf. Sci. Catal. 38 (1988) 383–392. Crossref

(44). Y. Okamoto, Bull. Chem. Soc. Jpn. 87 (2014) 20–58. Crossref

(45). H. Shang, C. Liu, Y. Xu, J. Qiu, F. Wei, Fuel Process. Technol. 88 (2007) 117–123. Crossref

(46). M. Güler, D. Varişli, Turkish J. Chem. 44 (2020) 309–324. Crossref

(47). D. Deng, N. Chen, Y. Li, X. Xing, X. Liu, X. Xiao, Y. Wang, Physica E 86 (2017) 284–291. Crossref

(48). B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.C. Volta, J. Phys. Chem. B. 107 (2003) 11475–11484. Crossref

(49). Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, ACS Catal. 6 (2016) 2473–2481. Crossref

(50). M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 4 (2002) 822–826. Crossref

(51). V. Gupta, T.A. Saleh, Composites; Adsorption and Photo-degradation. Carbon Nanotubes - From Research to Applications (2011). Crossref

(52). R.A. DiLeo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 064307. Crossref

(53). I. Heo, M.H. Wiebenga, J.R. Gaudet, I.S. Nam, W. Li, C.H. Kim, Appl. Catal. B Environ. 160–161 (2014) 365–373. Crossref

Downloads

Published

2021-12-31

How to Cite

Matus Е., Yashnik, S., Salnikov, A., Khitsova, L., Popova, A., Nikitin, A., … Ismagilov, Z. (2021). Genesis and Properties of MOx/CNTs (M = Ce, Cu, Mo) Catalysts for Aerobic Oxidative Desulfurization of a Model Diesel Fuel. Eurasian Chemico-Technological Journal, 23(4), 267‒275. https://doi.org/10.18321/ectj1130

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>