Genesis and Properties of MOx/CNTs (M = Ce, Cu, Mo) Catalysts for Aerobic Oxidative Desulfurization of a Model Diesel Fuel

Authors

  • Е.V. Matus The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • S.A. Yashnik The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • A.V. Salnikov The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • L.M. Khitsova The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • A.N. Popova The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • A.P. Nikitin The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • S.A. Sozinov The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
  • Z.R. Ismagilov The Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj1130

Keywords:

metal-carbon catalyst, dibenzothiophene, diesel fuel, oxidative desulfurization

Abstract

Aerobic oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts (M = Ce, Cu, Mo) was studied to develop innovative technology for cleaning motor fuels to EURO-5 standard. It was shown that the thermal stability of catalysts improves in the following order of metal Сu < Сe < Мо. The disordering of the carbon matrix of support increases in the next row of M: Mo < Ce < Cu, which is accompanied by an increase in the specific surface area of the samples (40 → 105 m2/g). The forms of stabilization of the active component (CeO2, CuO/Cu2O/ Cu, or MoO3/MoO2) were revealed, indicating a partial reduction of the metal cations during the thermal decomposition of copper and molybdenum precursor compounds deposited on CNTs. In oxidative desulfurization of a model diesel fuel over MOx/CNTs catalysts at 150 °C the total conversion of dibenzothiophene increased in the next row of M: Се < Сu < Мо. It was found that at 150 °C over the optimum MoOx/CNTs catalyst the highest dibenzothiophene conversion 95–99% is observed. It was assumed that the high activity of MoOx/CNTs is associated with both the oxidizing ability and the tendency of MoOx to chemosorption of sulfur compounds.

References

(1). Cleaning up the global on-road diesel fleet, (2016). URL

(2). B. Zhang. Chapter 1: Hydroprocessing and the Chemistry. Hydroprocessing Catalysts and Processes, 2018, pp. 1–56. Crossref DOI: https://doi.org/10.1142/q0141

(3). Z. Chen, L. Ling, B. Wang, H. Fan, J. Shangguan, J. Mi, Appl. Surf. Sci. 387 (2016) 483–490. Crossref DOI: https://doi.org/10.1016/j.apsusc.2016.06.078

(4). H. Zhu, X. Li, N. Shi, X. Ding, Z. Yu, W. Zhao, H. Ren, Y. Pan, Y. Liu, W. Guo, Catal. Sci. Technol. 11 (2021) 1615–1625. Crossref DOI: https://doi.org/10.1039/D0CY01523G

(5). P. Wu, W. Zhu, B. Dai, Y. Chao, C. Li, H. Li, M. Zhang, W. Jiang, H. Li, Chem. Eng. J. 301 (2016) 123–131. Crossref DOI: https://doi.org/10.1016/j.cej.2016.04.103

(6). N. Lv, L. Sun, L. Chen, Y. Li, J. Zhang, P. Wu, H. Li, W. Zhu, H. Li, Phys. Chem. Chem. Phys. 21 (2019) 21867–21874. Crossref DOI: https://doi.org/10.1039/C9CP03758F

(7). L. Dai, Y. Wei, X. Xu, P. Wu, M. Zhang, C. Wang, H. Li, Q. Zhang, H. Li, W. Zhu, ChemCatChem 12 (2020) 1734–1742. Crossref DOI: https://doi.org/10.1002/cctc.201902088

(8). J. Xiao, L. Wu, Y. Wu, B. Liu, L. Dai, Z. Li, Q. Xia, H. Xi, Appl. Energ. 113 (2014) 78–85. Crossref DOI: https://doi.org/10.1016/j.apenergy.2013.06.047

(9). S.A. Yashnik, M.A. Kerzhentsev, A.V. Salnikov, Z.R. Ismagilov, A. Bourane, O.R. Koseoglu, Kinet. Catal. 56 (2015) 466–475. Crossref DOI: https://doi.org/10.1134/S0023158415040205

(10). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, A.A. Saraev, V.V. Kaichev, L.M. Khitsova, Z.R. Ismagilov, J. Yamin, O.R. Koseoglu, Kinet. Catal. 58 (2017) 58–72. Crossref DOI: https://doi.org/10.1134/S0023158417010128

(11). Z.R. Ismagilov, M.A. Kerzhentsev, S.A. Yashnik, S.R. Khairulin, A. V. Salnikov, V.N. Parmon, A. Bourane, O.R. Koseoglu, Eurasian Chem.-Technol. J. 17 (2015) 119–128. Crossref DOI: https://doi.org/10.18321/ectj202

(12). H. Mohumed, S. Rahman, S.A. Imtiaz, Y. Zhang, ACS Omega 5 (2020) 8023–8031. Crossref DOI: https://doi.org/10.1021/acsomega.0c00096

(13). X. Zeng, X. Xiao, Y. Li, J. Chen, H. Wang, Appl. Catal. B Environ. 209 (2017) 98–109. Crossref DOI: https://doi.org/10.1016/j.apcatb.2017.02.077

(14). I. Shafiq, S. Shafique, P. Akhter, M. Ishaq, W. Yang, M. Hussain, J. Clean. Prod. 294 (2021) 125731. Crossref DOI: https://doi.org/10.1016/j.jclepro.2020.125731

(15). A. Rajendran, T.Y. Cui, H.X. Fan, Z.F. Yang, J. Feng, W.Y. Li, J. Mater. Chem. A. 8 (2020) 2246–2285. Crossref DOI: https://doi.org/10.1039/C9TA12555H

(16). K.M. Dooley, D. Liu, A.M. Madrid, F.C. Knopf, Appl. Catal. A Gen. 468 (2013) 143–149. Crossref DOI: https://doi.org/10.1016/j.apcata.2013.08.013

(17). E.A. Eseva, A.V. Akopyan, A.V. Anisimov, A.L. Maksimov, Pet. Chem. 60 (2020) 979–990. Crossref DOI: https://doi.org/10.1134/S0965544120090091

(18). Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, A.A. Hajji, O.R. Koseoglu, Catal. Rev. 53 (2011) 199–255. Crossref DOI: https://doi.org/10.1080/01614940.2011.596426

(19). X. Bin Lim, W.-J. Ong, Nanoscale Horizons. 6 (2021) 588–633. Crossref DOI: https://doi.org/10.1039/D1NH00127B

(20). J.T. Sampanthar, H. Xiao, J. Dou, T.Y. Nah, X. Rong, W.P. Kwan, Appl. Catal. B Environ. 63 (2006) 85–93. Crossref DOI: https://doi.org/10.1016/j.apcatb.2005.09.007

(21). Y. Lu, Y. Wang, L. Gao, J. Chen, J. Mao, Q. Xue, Y. Liu, H. Wu, G. Gao, M. He, ChemSusChem 1 (2008) 302–306. Crossref DOI: https://doi.org/10.1002/cssc.200700144

(22). X. Ma, A. Zhou, C. Song, Catal. Today. 123 (2007) 276–284. Crossref DOI: https://doi.org/10.1016/j.cattod.2007.02.036

(23). Q. Zhang, J. Zhang, H. Yang, Y. Dong, Y. Liu, L. Yang, D. Wei, W. Wang, L. Bai, H. Chen, Catal. Sci. Technol. 9 (2019) 2915–2922. Crossref DOI: https://doi.org/10.1039/C9CY00459A

(24). C. Wang, Z. Chen, X. Yao, W. Jiang, M. Zhang, H. Li, H. Liu, W. Zhu, H. Li, RSC Adv. 7 (2017) 39383–39390. Crossref DOI: https://doi.org/10.1039/C7RA07286D

(25). Y. Shi, G. Liu, B. Zhang, X. Zhang, Green Chem. 18 (2016) 5273–5279. Crossref DOI: https://doi.org/10.1039/C6GC01357K

(26). F.L. Yu, C.Y. Liu, B. Yuan, C.X. Xie, S.T. Yu, Catal. Commun. 68 (2015) 49–52. Crossref DOI: https://doi.org/10.1016/j.catcom.2015.04.029

(27). M. Zhang, W. Liao, Y. Wei, C. Wang, Y. Fu, Y. Gao, L. Zhu, W. Zhu, H. Li, ACS Appl. Nano Mater. 4 (2021) 1085–1093. Crossref DOI: https://doi.org/10.1021/acsanm.0c02639

(28). M. Shi, D. Zhang, X. Yu, Y. Li, X. Wang, W. Yang, Fuel Process. Technol. 160 (2017) 136– 142. Crossref DOI: https://doi.org/10.1016/j.fuproc.2017.02.038

(29). Q. Gu, G. Wen, Y. Ding, K.H. Wu, C. Chen, D. Su, Green Chem. 19 (2017) 1175–1181. Crossref DOI: https://doi.org/10.1039/C6GC02894B

(30). W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem. 16 (2014) 211–220. Crossref DOI: https://doi.org/10.1039/C3GC41106K

(31). Q. Gu, Y. Lin, S. Heumann, D. Su, Chem. - Asian J. 12 (2017) 2876–2883. Crossref DOI: https://doi.org/10.1002/asia.201700995

(32). Y. Gao, Z. Lv, R. Gao, G. Zhang, Y. Zheng, J. Zhao, J. Hazard. Mater. 359 (2018) 258–265. Crossref DOI: https://doi.org/10.1016/j.jhazmat.2018.07.008

(33). O.Y. Podyacheva, A.N. Suboch, S.A. Yashnik, A.V. Salnikov, S.V. Cherepanova, L.S. Kibis, G.Y. Simenyuk, A.I. Romanenko, Z.R. Ismagilov, J. Struct. Chem. 62 (2021) 771–781. Crossref DOI: https://doi.org/10.1134/S0022476621050139

(34). E. Pérez-Mayoral, V. Calvino-Casilda, E. Soriano, Catal. Sci. Technol. 6 (2016) 1265– 1291. Crossref DOI: https://doi.org/10.1039/C5CY01437A

(35). B.N. Bhadra, N.A. Khan, S.H. Jhung, J. Mater. Chem. A. 7 (2019) 17823–17833. Crossref DOI: https://doi.org/10.1039/C9TA03613J

(36). J. Chen, X. Wang, D. Wu, J. Zhang, Q. Ma, X. Gao, X. Lai, H. Xia, S. Fan, T.S. Zhao, Fuel 239 (2019) 44–52. Crossref DOI: https://doi.org/10.1016/j.fuel.2018.10.148

(37). Z.R. Ismagilov, E.V. Matus, O.S. Efimova, L.M. Khitsova, A.N. Popova, A.P. Nikitin, S.A. Sozinov, Eurasian Chem-Techol. J. 22 (2020) 81–88. Crossref DOI: https://doi.org/10.18321/ectj954

(38). E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, S.A. Sozinov, Z.R. Ismagilov, J. Phys. Conf. Ser. 1749 (2021). Crossref DOI: https://doi.org/10.1088/1742-6596/1749/1/012022

(39). Z.R. Ismagilov, S.A. Yashnik, N.V. Shikina, E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, Eurasian Chem.-Techol. J. 21 (2019) 291–302. Crossref DOI: https://doi.org/10.18321/ectj886

(40). E.V. Matus, L.M. Khitsova, O.S. Efimova, S.A. Yashnik, N.V. Shikina, Z.R. Ismagilov, Eurasian Chem.-Techol. J. 21 (2019) 303–316. Crossref DOI: https://doi.org/10.18321/ectj887

(41). L.B. Okhlopkova, O.S. Efimova, L.M. Khitsova, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 566–575. Crossref DOI: https://doi.org/10.15372/CSD2020266

(42). D. Zhao, G. Zhang, L. Yan, L. Kong, H. Zheng, J. Mi, Z. Li, Catal. Sci. Technol. 10 (2020) 2615–2626. Crossref DOI: https://doi.org/10.1039/C9CY02407G

(43). M.V.C. Sekhar, Stud. Surf. Sci. Catal. 38 (1988) 383–392. Crossref DOI: https://doi.org/10.1016/S0167-2991(09)60671-6

(44). Y. Okamoto, Bull. Chem. Soc. Jpn. 87 (2014) 20–58. Crossref DOI: https://doi.org/10.1246/bcsj.20130204

(45). H. Shang, C. Liu, Y. Xu, J. Qiu, F. Wei, Fuel Process. Technol. 88 (2007) 117–123. Crossref DOI: https://doi.org/10.1016/j.fuproc.2004.08.010

(46). M. Güler, D. Varişli, Turkish J. Chem. 44 (2020) 309–324. Crossref DOI: https://doi.org/10.3906/kim-1907-4

(47). D. Deng, N. Chen, Y. Li, X. Xing, X. Liu, X. Xiao, Y. Wang, Physica E 86 (2017) 284–291. Crossref DOI: https://doi.org/10.1016/j.physe.2016.10.031

(48). B.M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.C. Volta, J. Phys. Chem. B. 107 (2003) 11475–11484. Crossref DOI: https://doi.org/10.1021/jp0358376

(49). Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, ACS Catal. 6 (2016) 2473–2481. Crossref DOI: https://doi.org/10.1021/acscatal.6b00205

(50). M. Dieterle, G. Mestl, Phys. Chem. Chem. Phys. 4 (2002) 822–826. Crossref DOI: https://doi.org/10.1039/b107046k

(51). V. Gupta, T.A. Saleh, Composites; Adsorption and Photo-degradation. Carbon Nanotubes - From Research to Applications (2011). Crossref DOI: https://doi.org/10.5772/18009

(52). R.A. DiLeo, B.J. Landi, R.P. Raffaelle, J. Appl. Phys. 101 (2007) 064307. Crossref DOI: https://doi.org/10.1063/1.2712152

(53). I. Heo, M.H. Wiebenga, J.R. Gaudet, I.S. Nam, W. Li, C.H. Kim, Appl. Catal. B Environ. 160–161 (2014) 365–373. Crossref DOI: https://doi.org/10.1016/j.apcatb.2014.05.045

Downloads

Published

31-12-2021

How to Cite

Matus Е., Yashnik, S., Salnikov, A., Khitsova, L., Popova, A., Nikitin, A., … Ismagilov, Z. (2021). Genesis and Properties of MOx/CNTs (M = Ce, Cu, Mo) Catalysts for Aerobic Oxidative Desulfurization of a Model Diesel Fuel. Eurasian Chemico-Technological Journal, 23(4), 267‒275. https://doi.org/10.18321/ectj1130

Issue

Section

Article

Most read articles by the same author(s)

<< < 1 2 3 > >>