Adsorption Methods of Hydrogen and Methane Storage for the Fuel Cell Application
DOI:
https://doi.org/10.18321/ectj586Abstract
Adsorption of H2 and CH4 was performed at a pressure of to 100 atm on the samples of catalytic filamentous carbon (CFC) and supermicroporous active carbon (SAC) with a surface area ca. 3000 m2/g. It is shown that H2 is better sorbed on the CFC than on the SAC, while the opposite is observed for the CH4 adsorption. The high values of H2 sorption on the CFC (to 25-35 mg H2/g carbon) with a surface area of 100-300 m2/g is explained by hydrogen intercalation between the graphite-like CFC layers. Thus, it is worthwhile investigating the possibility of hydrogen and methane storage on the carbon porous materials.
References
(2). Brown L.F., Int. J. Hydrogen Energy, 2001, 26, 381.
(3). Pettersson L.J., Westerholm R., Int. J. Hydrogen Energy, 2001, 26, 243.
(4). Progress Report for Fuel Cell Power Systems, U.S. Department of Energy, Washington, DC, October 2000.
(5). Hynek S., Fuller W., Bentley J., Int. J. Hydrogen Energy, 1997, 22, 601.
(6). Cheng H.-M., Yang Q.-H., Liu C., Carbon, 2001, 39, 1447.
(7). Tibbetts G.G., Meisner G.P., Olk C.H., Carbon, 2001, 39, 2291.
(8). Chambers A., Park C., Baker R. T.K., Rodriguez N.M., J. Phys. Chem. B, 1998 102 4253.
(9). Park C., Anderson P.E., Chambers A., Tan C.D., Hidalgo R., Rodriguez N.M., J. Phys. Chem. B, 1999, 102, 10572.
(10). Wang Q., Johnson, J.K., J. Phys. Chem. B, 1999, 103, 277; J. Chem. Phys., 1999, 110, 577.
(11). Ahn C.C., Ye Y., Ratnakumar B.P., Witham C., Bowman R.C., Fultz B., Appl. Phys. Lett., 1998, 73, 3378.
(12). Pinkerton F.E., Wicke B.G., Olk C.H., Tibbetts G.G., Meisner G.P., Meyer M.S., Herbst J.F., J. Phys. Chem. B, 2000, 104, 9460.
(13). Yang R.T., Carbon, 2000, 38, 623.
(14). Poirier E., Chahine R., Bose T.K., Int. J. Hydrogen Energy, 2001, 26, 831.
(15). Hughes T.V., Chambers C.R., U.S. Patent 405480, 1989.
(16). Schultzenberger P.L., C. R. Acad. Sci., Paris, 1990, 111, 174.
(17). Kim M.S., Rodriguez N.M., Baker R.T.K., J. Catal., 1991, 131, 60.
(18). Tibbets G.G., Devour M.G., Rodda E.I., Carbon, 1987, 25, 367.
(19). Rostrup-Mielson J.R., Trimm D.L., J. Catal., 1977, 48, 155.
(20). Zaikovskii V.I., Chesnokov V.V., Buyanov R.A., Appl. Catal. A, 1988, 38, 41.
(21). Shaikhutdinov Sh.K., Zaikovskii V.I., Avdeeva L.B., Appl. Catal. A, 1996, 148, 123.
(22). Fenelonov V.B., Derevyankin A.Yu., Okkel L. G., Avdeeva L.B., Zaikovskii V.I., Salanov A.N., Rudina N.A., Likholobov V.A., Shaikhutdinov Sh.K., Carbon, 1997, 35, 1129.
(23). De Jong K.P., Geus J.W., Catal. Rev. Sci. Eng., 2000, 42, 481.
(24). Fasle Kibria A.K.M., Mo Y.H., Park K.S., Nahm K.S., Yun M.H., Int. J. Hydrogen Energy, 2001, 26, 823.
(25). Ivanov V.P., Fenelonov V.B., Avdeeva L.B., Goncharova O.V., React. Kinet. Catal. Lett., 1994, 53, 197.
(26). Fenelonov V.B., Melgunov M.S., Baronskaya N. A., React. Kinet. Catal. Lett., 1998, 63, 305.
(27). Abramson J., Carbon, 1973, 11, 337.
(28). Vorpagel E.R., Lavin J.G., Carbon, 1992, 30, 1033.
(29). Okino F., Touhara H., in: Comprehensive Supermolecular Chemistry, Atwood S.L., Mac-Nicol D. D., Davies S. E. D., Vogtle F., Lehn S.-M. (Eds.), Pergamon Press, New York, 1996, vol. 7, p. 25.
(30). Zabel H, Solin S.A. (Eds.), Graphite Intercalation Compounds I (II), Springer Ser. Mater. Sci. 14 (18), Springer, Berlin, 1990 (1992).
(31). Gupta B.K., Strivastava, Int. J. Hydrogen Energy, 2000, 25, 825; 2001, 26, 857.
(32). Dubinin M.M., Kadlec O., Kataeva L.N., Onysaitis B.A., Russ. Chem. Bull., 1988, 5, 977.
(33). Cook T.L., Komodromos C., Quinn D.F., Ragan S, in: Carbon Materials for Advanced Technologies, Burchell T.D. (Ed.), Pergamon Press, Amsterdam, p. 269.
(34). Bénard P., Chahine R., Langmuir, 2001, 17, 1950; Int. J. Hydrogen Energy, 2001, 26, 849.
(35). Zhou L, Zhou Y., Li M., Chen P., Wang Y, Langmuir, 2000, 16, 5955.
(36). Sircar S., Golden T.C., Rao M.B., Carbon, 1996, 34, 1.
(37). Chen X.S., McEnaney B., Mays T.J., Alcaniz-Monge J., Carbon, 1997, 35, 1251.
(38). Milewska-Duda J., Duda J., NodzeHski A., Lakatos J., Langmuir, 2000, 16, 5458.
(39). Gregg S.J., Sing K.S. W., Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London, 1982.
(40). Karnaukhov A.P., Fenelonov V.B., Gavrilov V. Yu., Pure & Appl. Chem., 1989, 61, 1913.
(41). Fenelonov V.B., Romannikov V.N., Derevyankin A.Yu., Micropor. Mesopor. Mater., 1999, 28, 57.
(42). Dubinin M.M. Carbon, 1981, 19, 321; 1982, 20, 195; 1983, 21, 359; 1985, 23, 373.
(43). Dubinin M.M., Stoeckli H.F., J. Colloid. Interface Sci., 1980, 75, 34.
(44). Bansal R.C., Donnet J.-B., Active Carbon, Marcel Dekker, New York, 1988.
(45). Brown S.D. M., Dresselhaus G., Dresselhaus M. S., MRS Symp. Proc., 1998, 497, 157.
(46). Dresselhaus M.S., Williams K.A., Eklund P.C., MRS Bull., 1999, 24, 45.
(47). Girschfelder I.O., Kertis K.F., Berd R.B., Molecular theory of gases and liquids, Inostrannaya literatura, Moscow, 1961 (in Russian).
(48). Zefirov Yu.V., Zorkii P.M., Uspekhi khimii, 1989, 68, 713 (in Russian).
(49). Pauling L., General Chemistry, W. H. Freeman, San Francisco, 1970.
(50). Nekrasov B.V., Fundamentals of general chemistry, vol. 1, Moscow, Khimiya, 1973, 595 p. (in Russian).
(51). Emsley J., The Elements, Clarendon Press, Oxford, 1991.
(52). Fenelonov V.B., Derevyankin A.Yu., Parmon V. N., Uspekhi khimii (in Russian), in press.