Stability of FePt, FePt3 Nanoclusters of Different Habits
DOI:
https://doi.org/10.18321/ectj1434Keywords:
Intermetallic, Solid solutions, Molecular dynamics, Nanoclusters, Diffraction-invisible phaseAbstract
Calculations of the total energy of Fe-Pt nanoclusters, corresponding in the phase diagram to the compositions of FePt, FePt3 intermetallics and possessing either characteristic structures L10 and L12, respectively, or non-characteristic disordered structure A1, as well as various particle habits (cuboctahedra, icosahedra) are carried out by molecular dynamics for the first time. The dependences of cluster stability on their size and temperature are plotted, along with the schemes of temperature transformations of cluster morphology and the dependence of the melting points of the clusters with these structures and habits on their size. The size range (2–8 nm) corresponds to the sizes of particles observed by high-resolution electron microscopy. It is shown that the species play an essential part in the phase transformations proceeding under heating in the nanostructured system Fe-Pt and leading to the formation of nanocrystals with highly ordered L10 structure possessing giant coercivity are cubic nanoclusters with the ordered structures L10 and L12. With an increase in cluster size, their stability and melting points increase, tending to saturation of the dependencies within the size range above 10 nm. The least stable clusters are those of intermetallics with non-characteristic disordered structure A1 and icosahedral habit.
References
(1). L. Yang, Y. Jiang, N. Kadasala, X. Zhang, C. Mao, Y. Wang, H. Liu, Y. Liu, Y. Yan, J. Solid State Chem. 22 (2014) 167–170. Crossref
(2). G. Kovacs, S.M. Kozlov, I. Matolinova, M. Vorokhta, V. Matolín, K.M. Neyman, Phys. Chem. Chem. Phys. 17 (2015) 28286–28297. Crossref
(3). S. Schneider, D. Pohl, S. Löffler, J. Rusz, D. Kasinathan, P. Schattschneider, L. Schultz, B. Rellinghaus, Ultramicroscopy 171 (2016) 186– 194. Crossref
(4). T.G. Klemmer, N. Shukla, C. Liu, X.W. Wu, E.B. Svedberg, O. Mryasov, R.W. Chantrell, D. Weller, Appl. Phys. Lett. 81 (2002) 2220–2222. Crossref
(5). J. He, B. Bian, Q. Zheng, J. Du, W. Xia, J. Zhang, A. Yan, J. Ping Liu, Green Chem. 18 (2019) 417–422. Crossref
(6). S.B. Dalavi, R.N. Panda, J. Magn. Magn. Mater. 428 (2017) 306–312. Crossref
(7). Y. Liu, K. Yang, L. Cheng, J. Zhu, X. Ma, H. Xu, Y. Li, L. Guo, Z. Liu, Nanomed. Nanotechnol. 9 (2013) 1077–1088. Crossref
(8). Y. Shi, M. Lin, S. Liang, J. Nanomater. (2015) 467873. Crossref
(9). C.L. Dennis, R. Lvkov, Int. J. Hyperth. 29 (2013) 715–729. Crossref
(10). X. Sun, Y. Huang, D. Nikles, Int. J. Nanotechnol. 1 (2004) 328. Crossref
(11). V.M. Pugachev, Y.A. Zakharov, A.N. Popova, D.M. Russakov, N.S. Zakharov, J. Phys. Conf. Ser. 1749 (2021) 012036. Crossref
(12). N.S. Zakharov, V.M. Pugachev, Yu.A. Zakharov A.N. Popova, Chem. Sust. Dev. 29 (2021) 536– 542. Crossref
(13). Binary Alloy Phase Diagrams–Second edition. T.B. Massalski, Editor-in-Chief; H. Okamoto, P.R. Subramanian, L. Kacprzak, Editors. ASM International, Materials Park, Ohio, USA. December 1990. xxii, 3589 pp., 3 vol. Crossref
(14). N.S. Zakharov, A.N. Popova, Yu.A. Zakharov, V.P. Pugachev, J. Phys.: Conf. Ser. 1749 (2021) 012012. Crossref
(15). N.S. Zakharov, A.N. Popova, Yu.A. Zakharov, D.M. Russakov, J. Phys.: Conf. Ser. 1749 (2021) 012011. Crossref
(16). Software official website: https://www.lammps. org Visit date: 16.05.2022
(17). В.J. Lee, M.I. Baskes, H. Kim, Y.K. Cho, Phys. Rev. B 64 (2001) 184102. Crossref
(18). J. Kim, Y. Koo, B.-J. Lee, J. Mater. Res. 21 (2006) 199–208. Crossref
(19). Software official website: https://winpython. github.io Visit date: 16.05.2022
(20). A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E Castelli, et al., J. Condens. Matter Phys. 29 (2017) 273002. Crossref
(21). A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18 (2010) 015012. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.