Preparation of Carbon Nanotubes with Supported Metal Oxide Nanoparticles: Effect of Metal Precursor on Thermal Decomposition Behavior of the Materials

Authors

  • E.V. Matus Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • L.M. Khitsova Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • O.S. Efimova Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • S.A. Yashnik Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • N.V. Shikina Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia
  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry SB RAS, 650000, 18 Sovetskiy pr., Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj887

Keywords:

carbon nanomaterial, nanoparticles, catalyst, thermal analysis

Abstract

To develop new catalysts based on carbon nanomaterials with supported metal oxide nanoparticles for oxidative transformations of sulfur compounds, a series of metal oxide nanoparticle-decorated carbon nanotubes (MOx/CNTs) were prepared by incipient wetness impregnation at a variation of the active metal type (M = Ce, Mo, Cu). The thermal decomposition of bulk and CNT supported metal precursors used in the preparation of MOx/CNTs was analyzed under inert atmosphere employing several thermoanalytical techniques (thermogravimetry, differential thermogravimetry and differential scanning calorimetry) coupled with mass spectrometry. The thermolysis parameters of the bulk and supported metal precursors were compared and the effect of CNT support on the decomposition pattern of compounds was elucidated. It was established that the decomposition of metal precursors supported on CNTs was started and completed at temperatures of 15‒25 and 25‒70°C lower, respectively, compared with the bulk active metal precursor. The enhancement of CNT support stability against thermal degradation is observed in the following row of metal cations: Ce < Cu < Мо < pristine and metal anions of precursor: nitrate < chloride < sulfate. The optimal mode of thermal treatment of catalyst and appropriate active metal precursors were selected for advanced synthesis of nanosized MOx/CNT catalyst.

References

(1). F. Zaera, Chem. Soc. Rev. 42 (2013) 2746–2762. Crossref DOI: https://doi.org/10.1039/C2CS35261C

(2). C.E. Figueira, P.F. Moreira, R. Giudici, R.M.B. Alves, M. Schmal, Appl. Catal. A Gen. 550 (2018) 297–307. Crossref DOI: https://doi.org/10.1016/j.apcata.2017.11.019

(3). Z.R. Ismagilov, E.V. Matus, I.Z. Ismagilov, O.B. Sukhova, S.A. Yashnik, V.A. Ushakov, M.A. Kerzhentsev, Catal. Today 323 (2019) 166–182. Crossref DOI: https://doi.org/10.1016/j.cattod.2018.06.035

(4). P. Mäki-Arvela, D.Y. Murzin, Appl. Catal. A Gen. 451 (2013) 251–281. Crossref DOI: https://doi.org/10.1016/j.apcata.2012.10.012

(5). E.V. Matus, L.B. Okhlopkova, O.B. Sukhova, I.Z. Ismagilov, M.A. Kerzhentsev, Z.R. Ismagilov, J. Nanoparticle Res. 21 (2019). Crossref DOI: https://doi.org/10.1007/s11051-018-4454-5

(6). I.Z. Ismagilov, E.V. Matus, D.V. Nefedova, V.V. Kuznetsov, S.A. Yashnik, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 56 (2015) 394– 402. Crossref DOI: https://doi.org/10.1134/S0023158415030064

(7). E.V. Matus, D.V. Nefedova, O.B. Sukhova, I.Z. Ismagilov, V.A. Ushakov, S.A. Yashnik, A.P. Nikitin, M.A. Kerzhentsev, Z.R. Ismagilov, Kinet. Catal. 60 (2019) 496–507. Crossref DOI: https://doi.org/10.1134/S0023158419040074

(8). M. Gao, N. Jiang, Y. Zhao, C. Xu, H. Su, S. Zeng, J. Rare Earths. 34 (2016) 55–60. Crossref DOI: https://doi.org/10.1016/S1002-0721(14)60577-9

(9). W. Ahmed, H.S. Ahmed, H.S. El-Sheshtawy, N.A. Mohamed, A.I. Zahran, J. Fuel Chem. Technol. 44 (2016) 853–861. Crossref DOI: https://doi.org/10.1016/S1872-5813(16)30039-1

(10). H. Wang, X. Wang, J. Zheng, F. Peng, H. Yu, Chinese J. Catal. 35 (2014) 1687–1694. Crossref DOI: https://doi.org/10.1016/S1872-2067(14)60104-2

(11). J.P. Tessonnier, O. Ersen, G. Weinberg, C. Pham-Huu, D.S. Su, R. Schlögl, ACS Nano 3 (2009) 2081–2089. Crossref DOI: https://doi.org/10.1021/nn900647q

(12). J. Wang, X. Quan, S. Chen, H. Yu, G. Liu, J. Hazard. Mater. 368 (2019) 621–629. Crossref DOI: https://doi.org/10.1016/j.jhazmat.2019.01.095

(13). Z. Zhao, H. Zou, W. Lin, J. Rare Earths. 31 (2013) 247–250. Crossref DOI: https://doi.org/10.1016/S1002-0721(12)60266-X

(14). S-K. Ryu, W-K. Lee, S-J. Park, Carbon Lett. 5 (2004) 180–185

(15). Y. Lin, D.W. Baggett, J.W. Kim, E.J. Siochi, J.W. Connell, ACS Appl. Mater. Interfaces. 3 (2011) 1652–1664. Crossref DOI: https://doi.org/10.1021/am200209e

(16). A. Mahajan, A. Kingon, Á. Kukovecz, Z. Konya, P.M. Vilarinho, Mater. Lett. 90 (2013) 165–168. Crossref DOI: https://doi.org/10.1016/j.matlet.2012.08.120

(17). Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, A.A. Hajji, O.R. Koseoglu, Catal. Rev. - Sci. Eng. 53 (2011) 199–255. Crossref DOI: https://doi.org/10.1080/01614940.2011.596426

(18). W. Jiang, D. Zheng, S. Xun, Y. Qin, Q. Lu, W. Zhu, H. Li, Fuel 190 (2017) 1–9. Crossref DOI: https://doi.org/10.1016/j.fuel.2016.11.024

(19). X. Zhang, Y. Tang, S. Qu, J. Da, Z. Hao, ACS Catal. 5 (2015) 1053–1067. Crossref DOI: https://doi.org/10.1021/cs501476p

(20). Y. Gao, R. Gao, G. Zhang, Y. Zheng, J. Zhao, Fuel 224 (2018) 261–270. Crossref DOI: https://doi.org/10.1016/j.fuel.2018.03.034

(21). W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem. 16 (2014) 211–220. Crossref DOI: https://doi.org/10.1039/C3GC41106K

(22). N.M. Meman, B. Zarenezhad, A. Rashidi, Z. Hajjar, E. Esmaeili, J. Ind. Eng. Chem. 22 (2015) 179–184. Crossref DOI: https://doi.org/10.1016/j.jiec.2014.07.008

(23). N. Mohammadi Meman, M. Pourkhalil, A. Rashidi, B. ZareNezhad, J. Ind. Eng. Chem. 20 (2014) 4054–4058. Crossref DOI: https://doi.org/10.1016/j.jiec.2014.01.004

(24). Z.R. Ismagilov, M.A. Kerzhentsev, S.A. Yashnik, S.R. Khairulin, A. V. Salnikov, V.N. Parmon, A. Bourane, O.R. Koseoglu, Eurasian Chem. Tech. J. 17 (2015) 119–128. Crossref DOI: https://doi.org/10.18321/ectj202

(25). S.A. Yashnik, A.V. Salnikov, M.A. Kerzhentsev, A.A. Saraev, V.V. Kaichev, L.M. Khitsova, Z.R. Ismagilov, J. Yamin, O.R. Koseoglu, Kinet. Catal. 58 (2017) 58–72. Crossref DOI: https://doi.org/10.1134/S0023158417010128

(26). S.A. Yashnik, M.A. Kerzhentsev, A. V. Salnikov, Z.R. Ismagilov, A. Bourane, O.R. Koseoglu, Kinet. Catal. 56 (2015) 466–475. Crossref DOI: https://doi.org/10.1134/S0023158415040205

(27). W.A.W.A. Bakar, R. Ali, A.A.A. Kadir, W.N.A.W. Mokhtar, Fuel Process. Technol. 101 (2012) 78–84. Crossref DOI: https://doi.org/10.1016/j.fuproc.2012.04.004

(28). S. Sahebian, S.M. Zebarjad, J. Vahdati Khaki, A. Lazzeri, Int. Nano Lett. 6 (2016) 183–190. Crossref DOI: https://doi.org/10.1007/s40089-016-0185-8

(29). C.T. Hsieh, J.Y. Lin, Adv. Mater. Res. 55–57 (2008) 545–548. Crossref DOI: https://doi.org/10.4028/www.scientific.net/AMR.55-57.545

(30). P.M. Masipa, T. Magadzu, B. Mkhondo, S. Afr. J. Chem. 66 (2013) 173–178

(31). H.M. Elnabawy, J. Casanova-Chafer, B. Anis, M. Fedawy, M. Scardamaglia, C. Bittencourt, A.S.G. Khalil, E. Llobet, X. Vilanova, Beilstein J. Nanotechnol. 10 (2019) 105–118. Crossref DOI: https://doi.org/10.3762/bjnano.10.10

(32). R. Rajarao, R.P. Jayanna, V. Sahajwalla, B.R. Bhat, Procedia Mater. Sci. 5 (2014) 69–75. Crossref DOI: https://doi.org/10.1016/j.mspro.2014.07.243

(33). A. Corma, P. Concepción, M. Boronat, M.J. Sabater, J. Navas, M.J. Yacaman, E. Larios, A. Posadas, M.A. López-Quintela, D. Buceta, E. Mendoza, G. Guilera, A. Mayoral, Nat. Chem. 5 (2013) 775–81. Crossref DOI: https://doi.org/10.1038/nchem.1721

(34). K.S. Khashan, G.M. Sulaiman, R. Mahdi, Artif. Cell. Nanomed. B. 45 (2017) 1699–1709. Crossref DOI: https://doi.org/10.1080/21691401.2017.1282498

(35). K.S. Khashan, M.S. Jabir, F.A. Abdulameer, J. Phys. Conf. Ser. 1003 (2018). Crossref DOI: https://doi.org/10.1088/1742-6596/1003/1/012100

(36). B. Małecka, A. Łącz, E. Drozdz, A. Małecki, J. Therm. Anal. Calorim. 119 (2015) 1053–1061. Crossref DOI: https://doi.org/10.1007/s10973-014-4262-9

(37). M.J. Tiernan, E.A. Fesenko, P.A. Barnes, G.M.B. Parkes, M. Ronane, Thermochim. Acta. 379 (2001) 163–175. Crossref DOI: https://doi.org/10.1016/S0040-6031(01)00614-1

(38). Z. Wu, X. Cai, Z. Yang, J. Nanoparticle Res. 17 (2015) 1–8. Crossref DOI: https://doi.org/10.1007/s11051-015-3134-y

(39). H. Li, H. Xu, J. Wang, J. Nat. Gas Chem. 20 (2011) 1–8. Crossref DOI: https://doi.org/10.1016/S1003-9953(10)60156-9

(40). Z.R. Ismagilov, S.A. Yashnik, N.V. Shikina, E.V. Matus, O.S. Efimova, A.N. Popova, A.P. Nikitin, Eurasian Chem. Tech. J. 21 (2019) 291–302. DOI: https://doi.org/10.18321/ectj886

(41). C.A. Strydom, C.P.J. van Vuuren, J. Therm. Anal. 32 (1987) 157–160. Crossref DOI: https://doi.org/10.1007/BF01914558

(42). S. Xue, W. Wu, X. Bian, Y. Wu, J. Rare Earths. 35 (2017) 1156–1163. Crossref DOI: https://doi.org/10.1016/j.jre.2017.06.001

(43). R. Farra, F. Girgsdies, W. Frandsen, M. Hashagen, R. Schlögl, D. Teschner, Catal. Letters. 143 (2013) 1012–1017. Crossref DOI: https://doi.org/10.1007/s10562-013-1085-4

(44). N. Audebrand, N. Guillou, J.P. Auffrédic, D. Louër, Thermochim. Acta. 286 (1996) 83–87. Crossref DOI: https://doi.org/10.1016/0040-6031(96)02944-9

(45). M.F.P. da Silva, J.R. Matos, P.C. Isolani, J. Therm. Anal. Calorim. 94 (2008) 305–311. Crossref DOI: https://doi.org/10.1007/s10973-007-8906-x

(46). L. Tai, P.A. Lessing, J. Mater. Res. 7 (1992) 502–510. Crossref DOI: https://doi.org/10.1557/JMR.1992.0502

(47). I.A. Farbun, I. V. Romanova, T.E. Terikovskaya, D.I. Dzanashvili, S.A. Kirillov, Russ. J. Appl. Chem. 80 (2007) 1798–1803. Crossref DOI: https://doi.org/10.1134/S1070427207110031

(48). P. Wiecinska, J. Therm. Anal. Calorim. 123 (2016) 1419–1430. Crossref DOI: https://doi.org/10.1007/s10973-015-5075-1

(49). M. Getsova, D. Todorovsky, V. Enchev, I. Wawer, Monatshefte Fur Chemie. 138 (2007) 389–401. Crossref DOI: https://doi.org/10.1007/s00706-007-0624-3

(50). I.V. Morozov, K.O. Znamenkov, Y.M. Korenev, O.A. Shlyakhtin, Thermochim. Acta. 403 (2003) 173–179. Crossref DOI: https://doi.org/10.1016/S0040-6031(03)00057-1

(51). T. Cseri, S. Békássy, G. Kenessey, G. Liptay, F. Figueras, Thermochim. Acta. 288 (1996) 137– 154. Crossref DOI: https://doi.org/10.1016/S0040-6031(96)03037-7

(52). J. Paulik, F. Paulik, M. Arnold, J. Therm. Anal. 34 (1988) 1455–1466. Crossref DOI: https://doi.org/10.1007/BF01914370

(53). M. Nafees, M. Ikram, S. Ali, Dig. J. Nanomater. Biostructures. 10 (2015) 635–641.

(54). Y. Yu, Asian J. Chem. 19 (2007) 2023–2028. DOI: https://doi.org/10.53738/REVMED.2023.19.847.2028

(55). M. Kamruddin, P.K. Ajikumar, S. Dash, R. Krishnan, A.K. Tyagi, K. Krishan, J. Therm. Anal. 48 (1997) 277–286. Crossref DOI: https://doi.org/10.1007/BF01979271

(56). Z. Wang, G. Marin, G.F. Naterer, K.S. Gabriel, J. Therm. Anal. Calorim. 119 (2015) 815–823. Crossref DOI: https://doi.org/10.1007/s10973-014-3929-6

(57). A. Biedunkiewicz, M. Krawczyk, U. Gabriel- Polrolniczak, P. Figiel, J. Therm. Anal. Calorim. 116 (2014) 715–726. Crossref DOI: https://doi.org/10.1007/s10973-013-3582-5

(58). G. Ciembroniewicz, R. Dziembaj, R. Kalicki, J. Therm. Anal. 27 (1983) 125–138. Crossref DOI: https://doi.org/10.1007/BF01907328

(59). E. Filipek, I. Rychlowska-Himmel, A. Paczesna, J. Therm. Anal. Calorim. 109 (2012) 711–716. Crossref DOI: https://doi.org/10.1007/s10973-012-2224-7

(60). A.I. Tarasova, A.Yu. Postnikov, P.I.Gavrilova, Combust. Explos. Shok Waves 35 (1999) 514– 517. Crossref DOI: https://doi.org/10.1007/BF02674495

(61). E.V. Matus, L.T. Tsykoza, Z.R. Ismagilov, V.V. Kuznetsov, Chemistry Sustain. Dev. 11 (2003) 167–171.

Downloads

Published

17-12-2019

How to Cite

Matus, E., Khitsova, L., Efimova, O., Yashnik, S., Shikina, N., & Ismagilov, Z. (2019). Preparation of Carbon Nanotubes with Supported Metal Oxide Nanoparticles: Effect of Metal Precursor on Thermal Decomposition Behavior of the Materials. Eurasian Chemico-Technological Journal, 21(4), 303–316. https://doi.org/10.18321/ectj887

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3