Analysis of Phase Transitions of Thermoresponsive Polymer Based on N-Vinylcaprolactam and 2-Hydroxyethyl Acrylate in Solutions from the Information Theory Point of View
DOI:
https://doi.org/10.18321/ectj1609Keywords:
phase transition , stimulus-sensitive polymers information theoryAbstract
A new method for analyzing phase transitions in solutions of thermoresponsive polymers is proposed, based on determining the amount of information contained in the curve describing the phase transition. The method is based on the use of an analogy with the Nyquist-Shannon-Kotelnikov theorem, which allows us to bring the analysis of a continuous function to the analysis of its values at discrete points, as well as the results of studies of slowly changing signals from the point of view of modern information theory. This analogy allows us to determine the minimum number of parameters that describe the phase transition. The proposed method was tested using the example of phase transitions in solutions of thermoresponsive copolymers of N-vinylcaprolactam with 2-hydroxyethyl acrylate of various compositions. The effectiveness of this method has been demonstrated; in particular, it has been shown that the number of parameters that describe the phase transition in this case does not exceed four. The possibilities of using the proposed method for constructing a classification of phase transitions in solutions of stimulus-sensitive polymers are discussed.
References
(1). M. Amin, T. Lammers, T.L.M. ten Hagen, Adv. Drug Deliv. Rev. 189 (2022) 114503. Crossref
(2). J. Brito, A.K. Andrianov, S.A. Sukhishvili, ACS Appl. BIO Mater. 5 (2022) 5057–5076. Crossref
(3). Y. Deng, J. Xi, L. Meng, Y. Lou, Eur. Polym. J. 180 (2022) 111591. Crossref
(4). Y. Shao, J. Duan, M. Wang, J. Cao, et. al., Polymers 15 (2023) 187. Crossref
(5). I.E. Suleimenov, O. Guven, G.A. Mun, Ch. Uzun, et al., Eurasian Chem.-Technol. J. 19 (2017) 41–46. Crossref
(6). Q.V. Bach, J.-R. Moon, D.S. Lee, J.-H. Kim, J. Appl. Polym. Sci. 107 (2008) 509–513. Crossref
(7). D.P. Huynh, M.K. Nguyen, B.S. Kim, D.S. Lee, Polymer 50 (2009) 2565–2571. Crossref
(8). K. Yang, T. Gao, Z. Bao, J. Su, X. Chen, J. Mater. Chem. B 1 (2013) 6442–6448. Crossref
(9). V.F. Korolovych, A. Erwin, A. Stryutsky, H. Lee, et al., Macromolecules 51 (2018) 4923–4937. Crossref
(10). A.Y. Ayazbayeva, A.V Shakhvorostov, T.M. Seilkhanov, V.O. Aseyev, et al., Bulletin of the University of Karaganda – Chemistry 104 (2021) 9–20. Crossref
(11). S.A. Dergunov, G.A. Mun, M.A. Dergunov, I.E. Suleimenov, et al., React. Funct. Polym. 71 (2011) 1129–1136. Crossref
(12). R. Li, F.-F. Xu, Z.-L. Gong, Y.-W. Zhong, Inorg. Chem. Front. 7 (2020) 3258–3281. Crossref
(13). S. Ye, B. Wei, L. Zeng, Gels 8 (2022) 302. Crossref
(14). I. Suleimenov, O. Guven, G. Mun, A. Beissegul, et al., Polym. Int. 62 (2013) 1310–1315. Crossref
(15). T. Budtova, I. Suleimenov, S. Frenkel, Polymer 36 (1995) 2055–2058. Crossref
(16). I. Suleimenov, D. Shaltykova, Z. Sedlakova, G. Mun, et al., Applied Mechanics and Materials 467 (2014) 58–63. Crossref
(17). S.E. Kudaibergenov, V.B. Sigitov, A.G. Didukh, E.A. Bekturov, et al., Polym. Adv. Technol. 11 (2000) 805–809. Crossref
(18). V.V. Vasilevskaya, P.G. Khalatur, A.R. Khokhlov, Macromolecules 36 (2003) 10103–10111. Crossref
(19). H.K. Murnen, A.R. Khokhlov, P.G. Khalatur, R.A. Segalman, et al., Macromolecules 45 (2012) 5229–5236. Crossref
(20). Y.S. Vitulyova, A.S. Bakirov, S.T. Baipakbayeva, I.E. Suleimenov, IOP Conf. Ser.: Mater. Sci. Eng. 946 (2020). Crossref
(21). Y.S. Vitulyova, A.S. Bakirov, D.B. Shaltykova, I.E. Suleimenov, IOP Conf. Ser.: Mater. Sci. Eng. 946 (2020). Crossref
(22). H. Nyquist, Trans. Am. Inst. Electr. Eng. 47 (1928) 617–644. Crossref
(23). G.A. Mun, Z.S. Nurkeeva, S.M. Koblanov, V.V. Khutoryanskiy, et al., Rad. Phys. Chem. 71 (2004) 1031–1037. Crossref
(24). I. Suleimenov, D. Shaltykova, G. Mun, P. Obukhova, et al., Adv. Mater. Res. 749 (2013) 60–64. Crossref
(25). B.B. Ermukhambetova, I.E. Suleimenov, A.Z. Alikulov, I. Moldakhan, et al., Polym. Sci. Ser. A 63 (2021) 8–14. Crossref
(26). G.A. Mun, Z.S. Nurkeeva, A.B. Beissegul, A.V. Dubolazov, et al., Macromol. Chem. Phys. 208 (2007) 979–987. Crossref
(27). I.E. Suleimenov, T.V. Budtova, S.A. Adil’bekov, I.Y. Pereladov, et al., Polym. Sci. Ser. A 46 (2004) 797–805.
(28). G.A. Mun, I. Moldakhan, A.M. Serikbay, D. Kaldybekov, et al., Int. J. Biol. Chem. 13 (2020) 4–13. Crossref
(29). S. Kabdushev, G. Mun, I. Suleimenov, A. Alikulov, et al., Polymers 15 (2023) 3578. Crossref
(30). R. Shaikhutdinov, G. Mun, E. Kopishev, A. Bakirov, et al., Polymers 16 (2024) 584. Crossref
(31). A. Bakirov, E. Kopishev, K. Kadyrzhan, E. Donbaeva, et al., Gels 10 (2024) 395. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.