Efficient Photocatalytic Hydrogen Evolution via Cocatalyst Loaded Al-doped SrTiO3
DOI:
https://doi.org/10.18321/ectj1636Keywords:
photocatalytic water splitting, SrTiO3, cocatalysts, H2 evolutionAbstract
The growing reliance on fossil fuels is causing significant environmental issues, prompting the search for renewable energy sources. Hydrogen energy, which produces only water vapor, is a promising solution. This study focuses on developing an aluminum-doped SrTiO3 photocatalyst with dual cocatalysts (Rh/Cr2O3 and CoOOH) for efficient photocatalytic water splitting. Using a simple chemical deposition method, high-purity and crystalline SrTiO3 was synthesized and thoroughly characterized. The results show that the modified SrTiO3 achieved significantly higher photocatalytic activity, with Rh/Cr2O3/SrTiO3@Al/CoOOH producing 11.04 mmol g–1 h–1 of H2 and 4.69 mmol g–1 h–1 of O2. This work demonstrates the effectiveness of dual cocatalyst deposition and aluminum doping in enhancing photocatalytic performance by improving charge separation and reducing recombination.
References
(1). G. Yergaziyeva, Z. Kuspanov, M. Mambetova, et al., J. CO2 Util. 80 (2024) 102682. Crossref
(2). J. Wang, W. Azam, Geosci. Front. 15 (2024) 101757. Crossref
(3). E. Dmitriyeva, I. Lebedev, E. Bondar, et al., Eurasian Chem.-Technol. J. 25 (2024) 211–217. Crossref
(4). G. Yergaziyeva, E. Kutelia, K. Dossumov, et al., Eurasian Chem.-Technol. J. 25 (2023) 21–32. Crossref
(5). E. Kutelia, K. Dossumov, M. Mambetova, et al., AIP Conf. Proc. 2803 (2023) 040015. Crossref
(6). V. Pavlenko, K. Temirkulova, A. Zakharov, et al., Eurasian Chem.-Technol. J. 25 (2024) 201–210. Crossref
(7). Q. Hassan, A.Z. Sameen, H.M. Salman, et al., J. Energy Storage 72 (2023) 108404. Crossref
(8). M. Yue, H. Lambert, E. Pahon, et al., Renew. Sustain. Energy Rev. 146 (2021) 111180. Crossref
(9). Е.V. Matus, I.Z. Ismagilov, E.S. Mikhaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 24 (2022) 69–91. Crossref
(10). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, H.C.L. Abbenhuis, Eurasian Chem.-Technol. J. 19 (2017) 3–16. Crossref
(11). Z. Kuspanov, A. Umirzakov, A. Serik, Int. J. Hydrogen Energy 48 (2023) 38634–38654. Crossref
(12). Z. Zhao, R. Goncalves, S. Barman, et al., Energy Environ. Sci. 12 (2019) 1385–1395. Crossref
(13). Y. Sakata, Y. Miyoshi, T. Maeda, et al., Appl. Catal. A-Gen. 521 (2016) 227–232. Crossref
(14). Y. Liu, Y.-H. Li, X. Li, et al., ACS Nano 14 (2020) 14181–14189. Crossref
(15). Q. Shen, W. Kang, L. Ma, et al., Chem. Eng. J. 478 (2023) 147338. Crossref
(16). M. Tayyab, Y. Liu, Z. Liu, et al., Chem. Eng. J. 455 (2023) 140601. Crossref
(17). T. Takata, J. Jiang, Y. Sakata, et al., Nature 581 (2020) 411–414. Crossref
(18). A.D. Kudaibergen, Z.B. Kuspanov, A.N. Issadykov, et al., Eurasian Chem.-Technol. J. 25 (2023) 139–146. Crossref
(19). M. Bissenova, A. Umirzakov, K. Mit, et al., Molecules 29 (2024) 1101. Crossref
(20). A. Serik, Z. Kuspanov, M. Bissenova, N. Idrissov, et al., J. Water Process Eng. 66 (2024) 106052. Crossref
(21). Y. Ma, Z. Wu, H. Wang, et al., CrystEngComm 21 (2019) 3982–3992. Crossref
(22). Y.-G. Lee, Y.-C. Cheng, Y.-T. Lin, et al., J. Phys. Chem. C 127 (2023) 9981–9991. Crossref
(23). E. Rocha-Rangel, W.J. Pech-Rodríguez, J. López-Hernández, et al., Arch. Metall. Mater. 65 (2020) 621–626. Crossref
(24). R. Li, T. Takata, B. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202313537. Crossref
(25). H. Tan, Z. Zhao, W. Zhu, et al., ACS Appl. Mater. Interfaces 6 (2014) 19184–19190. Crossref
(26). N. Ashurov, B. Oksengendler, S. Maksimov, et al., Eurasian Chem.-Technol. J. 24 (2022) 229–239. Crossref
(27). L. Tian, X. Guan, Y. Dong, et al., Environ. Chem. Lett. 21 (2023) 1257–1264. Crossref
(28). S. Zong, L. Tian, X. Guan, et al., J. Colloid Interface Sci. 606 (2022) 491–499. Crossref
(29). J. Jiang, Y. Zhou, J. Zhang, et al., Int. J. Hydrogen Energy 82 (2024) 646–654. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.