Efficient Photocatalytic Hydrogen Evolution via Cocatalyst Loaded Al-doped SrTiO3

Authors

  • Zh. Kuspanov Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • A. Serik Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • A. Baratov Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • U. Abdikarimova Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • N. Idrissov Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • M. Bissenova Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimov str., 050032, Almaty, Kazakhstan
  • Ch. Daulbayev Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1636

Keywords:

photocatalytic water splitting, SrTiO3, cocatalysts, H2 evolution

Abstract

The growing reliance on fossil fuels is causing significant environmental issues, prompting the search for renewable energy sources. Hydrogen energy, which produces only water vapor, is a promising solution. This study focuses on developing an aluminum-doped SrTiO3 photocatalyst with dual cocatalysts (Rh/Cr2O3 and CoOOH) for efficient photocatalytic water splitting. Using a simple chemical deposition method, high-purity and crystalline SrTiO3 was synthesized and thoroughly characterized. The results show that the modified SrTiO3 achieved significantly higher photocatalytic activity, with Rh/Cr2O3/SrTiO3@Al/CoOOH producing 11.04 mmol g–1 h–1 of H2 and 4.69 mmol g–1 h–1 of O2. This work demonstrates the effectiveness of dual cocatalyst deposition and aluminum doping in enhancing photocatalytic performance by improving charge separation and reducing recombination.

References

(1). G. Yergaziyeva, Z. Kuspanov, M. Mambetova, et al., J. CO2 Util. 80 (2024) 102682. Crossref

(2). J. Wang, W. Azam, Geosci. Front. 15 (2024) 101757. Crossref

(3). E. Dmitriyeva, I. Lebedev, E. Bondar, et al., Eurasian Chem.-Technol. J. 25 (2024) 211–217. Crossref

(4). G. Yergaziyeva, E. Kutelia, K. Dossumov, et al., Eurasian Chem.-Technol. J. 25 (2023) 21–32. Crossref

(5). E. Kutelia, K. Dossumov, M. Mambetova, et al., AIP Conf. Proc. 2803 (2023) 040015. Crossref

(6). V. Pavlenko, K. Temirkulova, A. Zakharov, et al., Eurasian Chem.-Technol. J. 25 (2024) 201–210. Crossref

(7). Q. Hassan, A.Z. Sameen, H.M. Salman, et al., J. Energy Storage 72 (2023) 108404. Crossref

(8). M. Yue, H. Lambert, E. Pahon, et al., Renew. Sustain. Energy Rev. 146 (2021) 111180. Crossref

(9). Е.V. Matus, I.Z. Ismagilov, E.S. Mikhaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 24 (2022) 69–91. Crossref

(10). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, H.C.L. Abbenhuis, Eurasian Chem.-Technol. J. 19 (2017) 3–16. Crossref

(11). Z. Kuspanov, A. Umirzakov, A. Serik, Int. J. Hydrogen Energy 48 (2023) 38634–38654. Crossref

(12). Z. Zhao, R. Goncalves, S. Barman, et al., Energy Environ. Sci. 12 (2019) 1385–1395. Crossref

(13). Y. Sakata, Y. Miyoshi, T. Maeda, et al., Appl. Catal. A-Gen. 521 (2016) 227–232. Crossref

(14). Y. Liu, Y.-H. Li, X. Li, et al., ACS Nano 14 (2020) 14181–14189. Crossref

(15). Q. Shen, W. Kang, L. Ma, et al., Chem. Eng. J. 478 (2023) 147338. Crossref

(16). M. Tayyab, Y. Liu, Z. Liu, et al., Chem. Eng. J. 455 (2023) 140601. Crossref

(17). T. Takata, J. Jiang, Y. Sakata, et al., Nature 581 (2020) 411–414. Crossref

(18). A.D. Kudaibergen, Z.B. Kuspanov, A.N. Issadykov, et al., Eurasian Chem.-Technol. J. 25 (2023) 139–146. Crossref

(19). M. Bissenova, A. Umirzakov, K. Mit, et al., Molecules 29 (2024) 1101. Crossref

(20). A. Serik, Z. Kuspanov, M. Bissenova, N. Idrissov, et al., J. Water Process Eng. 66 (2024) 106052. Crossref

(21). Y. Ma, Z. Wu, H. Wang, et al., CrystEngComm 21 (2019) 3982–3992. Crossref

(22). Y.-G. Lee, Y.-C. Cheng, Y.-T. Lin, et al., J. Phys. Chem. C 127 (2023) 9981–9991. Crossref

(23). E. Rocha-Rangel, W.J. Pech-Rodríguez, J. López-Hernández, et al., Arch. Metall. Mater. 65 (2020) 621–626. Crossref

(24). R. Li, T. Takata, B. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202313537. Crossref

(25). H. Tan, Z. Zhao, W. Zhu, et al., ACS Appl. Mater. Interfaces 6 (2014) 19184–19190. Crossref

(26). N. Ashurov, B. Oksengendler, S. Maksimov, et al., Eurasian Chem.-Technol. J. 24 (2022) 229–239. Crossref

(27). L. Tian, X. Guan, Y. Dong, et al., Environ. Chem. Lett. 21 (2023) 1257–1264. Crossref

(28). S. Zong, L. Tian, X. Guan, et al., J. Colloid Interface Sci. 606 (2022) 491–499. Crossref

(29). J. Jiang, Y. Zhou, J. Zhang, et al., Int. J. Hydrogen Energy 82 (2024) 646–654. Crossref

Published

2024-10-22

How to Cite

Kuspanov, Z., Serik, A., Baratov, A., Abdikarimova, U., Idrissov, N., Bissenova, M., & Daulbayev, C. (2024). Efficient Photocatalytic Hydrogen Evolution via Cocatalyst Loaded Al-doped SrTiO3. Eurasian Chemico-Technological Journal, 26(3), 133–140. https://doi.org/10.18321/ectj1636

Issue

Section

Articles