Efficient Photocatalytic Hydrogen Evolution via Cocatalyst Loaded Al-doped SrTiO3

Authors

  • Zh. Kuspanov Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • A. Serik Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • A. Baratov Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • U. Abdikarimova Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • N. Idrissov Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan
  • M. Bissenova Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimov str., 050032, Almaty, Kazakhstan
  • Ch. Daulbayev Satbayev University, 22 Satbayev str., 050013, Almaty, Kazakhstan; Institute of Nuclear Physics, 1 Ibragimov str., 050032 Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1636

Keywords:

Photocatalytic water splitting, SrTiO3 , Cocatalysts , H2 evolution

Abstract

The growing reliance on fossil fuels is causing significant environmental issues, prompting the search for renewable energy sources. Hydrogen energy, which produces only water vapor, is a promising solution. This study focuses on developing an aluminum-doped SrTiO3 photocatalyst with dual cocatalysts (Rh/Cr2O3 and CoOOH) for efficient photocatalytic water splitting. Using a simple chemical deposition method, high-purity and crystalline SrTiO3 was synthesized and thoroughly characterized. The results show that the modified SrTiO3 achieved significantly higher photocatalytic activity, with Rh/Cr2O3/SrTiO3@Al/CoOOH producing 11.04 mmol g–1 h–1 of H2 and 4.69 mmol g–1 h–1 of O2. This work demonstrates the effectiveness of dual cocatalyst deposition and aluminum doping in enhancing photocatalytic performance by improving charge separation and reducing recombination.

References

(1). G. Yergaziyeva, Z. Kuspanov, M. Mambetova, et al., J. CO2 Util. 80 (2024) 102682. Crossref DOI: https://doi.org/10.1016/j.jcou.2024.102682

(2). J. Wang, W. Azam, Geosci. Front. 15 (2024) 101757. Crossref DOI: https://doi.org/10.1016/j.gsf.2023.101757

(3). E. Dmitriyeva, I. Lebedev, E. Bondar, et al., Eurasian Chem.-Technol. J. 25 (2024) 211–217. Crossref DOI: https://doi.org/10.18321/ectj1543

(4). G. Yergaziyeva, E. Kutelia, K. Dossumov, et al., Eurasian Chem.-Technol. J. 25 (2023) 21–32. Crossref DOI: https://doi.org/10.18321/ectj1492

(5). E. Kutelia, K. Dossumov, M. Mambetova, et al., AIP Conf. Proc. 2803 (2023) 040015. Crossref DOI: https://doi.org/10.1063/5.0143475

(6). V. Pavlenko, K. Temirkulova, A. Zakharov, et al., Eurasian Chem.-Technol. J. 25 (2024) 201–210. Crossref DOI: https://doi.org/10.18321/ectj1542

(7). Q. Hassan, A.Z. Sameen, H.M. Salman, et al., J. Energy Storage 72 (2023) 108404. Crossref DOI: https://doi.org/10.1016/j.est.2023.108404

(8). M. Yue, H. Lambert, E. Pahon, et al., Renew. Sustain. Energy Rev. 146 (2021) 111180. Crossref DOI: https://doi.org/10.1016/j.rser.2021.111180

(9). Е.V. Matus, I.Z. Ismagilov, E.S. Mikhaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 24 (2022) 69–91. Crossref DOI: https://doi.org/10.18321/ectj1320

(10). I.Z. Ismagilov, E.V. Matus, V.V. Kuznetsov, H.C.L. Abbenhuis, Eurasian Chem.-Technol. J. 19 (2017) 3–16. Crossref DOI: https://doi.org/10.18321/ectj497

(11). Z. Kuspanov, A. Umirzakov, A. Serik, Int. J. Hydrogen Energy 48 (2023) 38634–38654. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2023.06.168

(12). Z. Zhao, R. Goncalves, S. Barman, et al., Energy Environ. Sci. 12 (2019) 1385–1395. Crossref DOI: https://doi.org/10.1039/C9EE00310J

(13). Y. Sakata, Y. Miyoshi, T. Maeda, et al., Appl. Catal. A-Gen. 521 (2016) 227–232. Crossref DOI: https://doi.org/10.1016/j.apcata.2015.12.013

(14). Y. Liu, Y.-H. Li, X. Li, et al., ACS Nano 14 (2020) 14181–14189. Crossref DOI: https://doi.org/10.1021/acsnano.0c07089

(15). Q. Shen, W. Kang, L. Ma, et al., Chem. Eng. J. 478 (2023) 147338. Crossref DOI: https://doi.org/10.1016/j.cej.2023.147338

(16). M. Tayyab, Y. Liu, Z. Liu, et al., Chem. Eng. J. 455 (2023) 140601. Crossref DOI: https://doi.org/10.1016/j.cej.2022.140601

(17). T. Takata, J. Jiang, Y. Sakata, et al., Nature 581 (2020) 411–414. Crossref DOI: https://doi.org/10.1038/s41586-020-2278-9

(18). A.D. Kudaibergen, Z.B. Kuspanov, A.N. Issadykov, et al., Eurasian Chem.-Technol. J. 25 (2023) 139–146. Crossref DOI: https://doi.org/10.18321/ectj1516

(19). M. Bissenova, A. Umirzakov, K. Mit, et al., Molecules 29 (2024) 1101. Crossref DOI: https://doi.org/10.3390/molecules29051101

(20). A. Serik, Z. Kuspanov, M. Bissenova, N. Idrissov, et al., J. Water Process Eng. 66 (2024) 106052. Crossref DOI: https://doi.org/10.1016/j.jwpe.2024.106052

(21). Y. Ma, Z. Wu, H. Wang, et al., CrystEngComm 21 (2019) 3982–3992. Crossref DOI: https://doi.org/10.1039/C9CE00495E

(22). Y.-G. Lee, Y.-C. Cheng, Y.-T. Lin, et al., J. Phys. Chem. C 127 (2023) 9981–9991. Crossref DOI: https://doi.org/10.1021/acs.jpcc.3c00483

(23). E. Rocha-Rangel, W.J. Pech-Rodríguez, J. López-Hernández, et al., Arch. Metall. Mater. 65 (2020) 621–626. Crossref DOI: https://doi.org/10.24425/amm.2020.132801

(24). R. Li, T. Takata, B. Zhang, et al., Angew. Chem. Int. Ed. 62 (2023) e202313537. Crossref DOI: https://doi.org/10.1002/anie.202313537

(25). H. Tan, Z. Zhao, W. Zhu, et al., ACS Appl. Mater. Interfaces 6 (2014) 19184–19190. Crossref DOI: https://doi.org/10.1021/am5051907

(26). N. Ashurov, B. Oksengendler, S. Maksimov, et al., Eurasian Chem.-Technol. J. 24 (2022) 229–239. Crossref DOI: https://doi.org/10.18321/ectj1436

(27). L. Tian, X. Guan, Y. Dong, et al., Environ. Chem. Lett. 21 (2023) 1257–1264. Crossref DOI: https://doi.org/10.1007/s10311-023-01580-8

(28). S. Zong, L. Tian, X. Guan, et al., J. Colloid Interface Sci. 606 (2022) 491–499. Crossref DOI: https://doi.org/10.1016/j.jcis.2021.08.049

(29). J. Jiang, Y. Zhou, J. Zhang, et al., Int. J. Hydrogen Energy 82 (2024) 646–654. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2024.07.441

Published

2024-10-22

How to Cite

Kuspanov, Z., Serik, A., Baratov, A., Abdikarimova, U., Idrissov, N., Bissenova, M., & Daulbayev, C. (2024). Efficient Photocatalytic Hydrogen Evolution via Cocatalyst Loaded Al-doped SrTiO3. Eurasian Chemico-Technological Journal, 26(3), 133–140. https://doi.org/10.18321/ectj1636

Issue

Section

Articles