A Numerical Study of Fluid Flow in the Porous Structure of Biological Scaffolds

Authors

  • Ch. Daulbayev al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • Z. Mansurov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • F. Sultanov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • M. Shams al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • A. Umirzakov Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • S. Serovajsky al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj974

Keywords:

Biologically soluble scaffolds, Tissue engineering, Fluid flow, 3D printing

Abstract

Tissue engineering (TE) is one of the promising areas that aims to address the global problem of organ and tissue shortages. The successful development of TE, particularly in bone tissue engineering, consists of the use of modern methods that allow the creation of scaffolds, the physicochemical, mechanical, and structural parameters of which will allow achieving the desired clinical results. The vast possibilities of the rapidly developing technology of three-dimensional (3D) printing, which allows the creation of individual scaffolds with high precision, has led to various developments in bone tissue TE. In this work, for the successful use of three-dimensional printing in TE to ensure the diffusion of nutrients during cell cultivation throughout the entire structure of the scaffold, a model of a rotating scaffold is proposed, and the movement of the diffusion flow of nutrient fluid is calculated based on Darcy’s law, which regulates the flow of fluids through porous media. The conducted studies of the rate of diffusion flow of nutrients based on glucose in the porous structure of scaffolds with a 10% content of calcium hydroxyapatite demonstrated the promise of using a model of a rotating composite scaffold in TE of bone tissue. The results show that at a scaffold rotation speed of 12 rpm, the diffusion flow rate of nutrients in the composite scaffolds porous structure is practically not affected by their geometric shape.

References

(1). M.S. Hall, J.T. Decker, L.D. Shea, Biomaterials 255 (2020) 120189. Crossref

(2). C. Li, L. Ouyang, J.P.K. Armstrong, M.M. Stevens, Trends Biotechnol. (2020) In press. Crossref

(3). I.M. Zurina, V.S. Presniakova, D.V. Butnaru, A.A. Svistunov, P.S. Timashev, Y.A. Rochev, Acta Biomater. 113 (2020) 63–83. Crossref

(4). M.T. Calejo, T. Ilmarinen, H. Skottman, M. Kellomäki, Acta Biomater. 66 (2018) 44–66. Crossref

(5). S. Pina, V.P. Ribeiro, O.C. Paiva, V.M. Correlo, J.M. Oliveira, R.L. Reis, Handbook of Tissue Engineering Scaffolds: Volume One, 2019, pp. 165–185. Crossref

(6). M.E. Furth, A. Atala, Principles of Tissue Engineering (Fourth Edition), 2014, pp. 83–123. Crossref

(7). Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Mater. Sci. Eng. C 31 (2011) 1245–1256. Crossref

(8). A. Haleem, M. Javaid, R.H. Khan, R. Suman, J. Clin. Orthop. Trauma 11 (2020) S118–S124. Crossref

(9). C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, X. He, S. Tian, J. Liao, B. Lu, Y. Wei, M. Wang, Bioact. Mater. 5 (2020) 82–91. Crossref

(10). J. Zhang, S. Yun, A. Karami, B. Jing, A. Zannettino, Y. Du, H. Zhang, Bioprinting 19 (2020) e00089. Crossref

(11). C.-H. Li, C.-H. Wu, C.-L. Lin, J. Mech. Behav. Biomed. Mater. 105 (2020) 103700. Crossref

(12). L. Wei, S. Wu, M. Kuss, X. Jiang, R. Sun, P. Reid, X. Qin, B. Duan, Bioact. Mater. 4 (2019) 256– 260. Crossref

(13). S. Beg, W.H. Almalki, A. Malik, M. Farhan, M. Aatif, K.S. Alharbi, N.K. Alruwaili, M. Alrobaian, M. Tarique, M. Rahman, Drug Discov. Today (2020) In press. Crossref

(14). S. Liu, H. Zhang, Q. Hu, Z. Shen, D. Rana, M. Ramalingam, J. Mech. Behav. Biomed. Mater. 104 (2020) 103642. Crossref

(15). C.Q. Zhao, X.C. Xu, Y.J. Lu, S.Q. Wu, Z.Y. Xu, T.T. Huang, J.X. Lin, J. Alloy. Compd. 814 (2020) 152327. Crossref

(16). W. Zhang, I. Ullah, L. Shi, Y. Zhang, H. Ou, J. Zhou, M.W. Ullah, X. Zhang, W. Li, Mater. Design 180 (2019) 107946. Crossref

(17). N.M. Ergul, S. Unal, I. Kartal, C. Kalkandelen, N. Ekren, O. Kilic, L. Chi-Chang, O. Gunduz, Polymer Test. 79 (2019) 106006. Crossref

(18). G.E. Dubinenko, A.L. Zinoviev, E.N. Bolbasov, V.T. Novikov, S.I. Tverdokhlebov, Mater. Today: Proc. 22 (2020) 228–234. Crossref

(19). A. Nakayama, I. Pop, Int. J. Heat and Mass Tran. 34 (1991) 357–367. Crossref

(20). G. Fragomeni, R. Iannelli, G. Falvo D’Urso Labate, M. Schwentenwein, G. Catapano, New Biotechnol. 52 (2019) 110–120. Crossref

(21). S. Grossemy, P.P.Y. Chan, P.M. Doran, Biochem. Eng. J. 159 (2020) 107602. Crossref

(22). P. Kumar, B. Dey, G.P. Raja Sekhar, Int. J. Eng. Sci. 127 (2018) 201–216. Crossref

(23). I.I. Krashin, L.V. Semendyaeva, A.I. Zinin, G.A. Zinina. Elsevier Geo-Engineering Book Series 2 (2004) 679–684. Crossref

(24). E.A. Botchwey, S.R. Pollack, E.M. Levine, E.D. Johnston, C.T. Laurencin, J. Biomed. Mater. Res. A 69A (2004) 205–215. Crossref

(25). L.V. Gonzalez Gil, H. Singh, J. de Sa. da Silva, D.P. dos Santos, D.T. Covas, K. Swiech, C.A. Torres Suazo, Biochem. Eng. J. 162 (2020) 107710. Crossref

(26). B.S. Borys, A. Le, E.L. Roberts, T. Dang, L. Rohani, C.Y.-M. Hsu, A.A. Wyma, D.E. Rancourt, I.D. Gates, M.S. Kallos, J. Biotechnol. 304 (2019) 16–27. Crossref

(27). P. Yu, T.S. Lee, Y. Zeng, H.T. Low, Int. J. Heat Mass Tran. 52 (2009) 316–327. Crossref

(28). M. Ciofalo, M.W. Collins, T.R. Hennessy, Med. Eng. Phys. 18 (1996) 437–451. Crossref

(29). Ch.B. Daulbaev, T.P. Dmitriev, F.R. Sultanov, Z.A. Mansurov, E.T. Aliev, J. Eng. Phys. Thermophy. 90 (2017) 1115–1118. Crossref

(30). Ch. Daulbayev, Z. Mansurov, G. Mitchell, A. Zakhidov, Eurasian Chem.-Technol. J. 20 (2018) 119–124. Crossref

(31). F. Sultanov, C. Daulbayev, B. Bakbolat, O. Daulbayev, M. Bigaj, Z. Mansurov, K. Kuterbekov, K. Bekmyrza, Chem. Phys. Lett. 737 (2019) 136821. Crossref

(32). F. Sultanov, B. Bakbolat, Z. Mansurov, Z. Azizov, S.-S. Pei, R. Ebrahim, C. Daulbayev, A. Urazgaliyeva, M. Tulepov, Eurasian Chem.- Technol. J. 19 (2017) 127–132. Crossref

(33). F.R. Sultanov, C. Daulbayev, B. Bakbolat, Z.A. Mansurov, A.A. Urazgaliyeva, R. Ebrahim, S.S. Pei, K.-P. Huang, Carbon Lett. 30 (2020) 81–92. Crossref

(34). F.R. Sultanov, Ch. Daulbayev, B. Bakbolat, Z.A. Mansurov, Eurasian Chem.-Technol. J. 20 (2018) 195–200. Crossref

(35). D.A. Zopf, C.L. Flanagan, A.G. Mitsak, J.R. Brennan, S.J. Hollister, Int. J. Pediatr. Otorhi. 114 (2018) 170–174. Crossref

(36). M. Hemshekhar, R.M. Thushara, S. Chandranayaka, L.S. Sherman, K. Kemparaju, K.S. Girish, Int. J. Biol. Macromol. 86 (2016) 917–928. Crossref

(37). M. Milojević, L. Gradišnik, J. Stergar, M. Skelin Klemen, A. Stožer, M. Vesenjak, P. Dobnik Dubrovski, T. Maver, T. Mohan, K. Stana Kleinschek, U. Maver, Appl. Surf. Sci. 488 (2019) 836–852. Crossref

(38). M.U.A. Khan, S. Haider, S.A. Shah, S.I.A. Razak, S.A. Hassan, M.R.A. Kadir, A. Haider, Int. J. Biol. Macromol. 151 (2020) 584–594. Crossref

(39). M. Ramadas, K. El Mabrouk, A.M. Ballamurugan, Mater. Chem. Phys. 242 (2020) 122456. Crossref

(40). B.W.M. de Wildt, S. Ansari, N.A.J.M. Sommerdijk, K. Ito, A. Akiva, S. Hofmann, Curr. Opin. Biomed. Eng. 10 (2019) 107–115. Crossref

(41). C.M. Agrawal, J.S. McKinney, D. Lanctot, K.A. Athanasiou, Biomaterials 21 (2000) 2443–2452. Crossref

(42). D. Ali, M. Ozalp, S.B.G. Blanquer, S. Onel, Eur. J. Mech. B-Fluid. 79 (2020) 376–385. Crossref

(43). H. Seddiqi, A. Saatchi, G. Amoabediny, M.N. Helder, S.A. Ravasjani, M.S. Hajat Aghaei, J. Jin, B. Zandieh-Doulabi, J. Klein-Nulend, Comput. Biol. Med. 24 (2020) 103826. Crossref

(44). M. Malvè, D.J. Bergstrom, X.B. Chen, Int. Commun. Heat Mass Trans. 96 (2018) 53–60. Crossref J. Zvicer, A.

(45). Medic, D. Veljovic, S. Jevtic, S. Novak, B. Obradovic, Polymer Test. 76 (2019) 464–472. Crossref

(46). G. Belgheisi, M.H. Nazarpak, M.S. Hashjin, Appl. Clay Sci. 185 (2020) 105434. Crossref

(47). A. Abdal-hay, N.T. Raveendran, B. Fournier, S. Ivanovski, Compos. Part B-Eng. 197 (2020) 108158. Crossref

(48). J. Mesquita-Guimarães, L. Ramos, R. Detsch, B. Henriques, M.C. Fredel, F.S. Silva, A.R. Boccaccini, J. Eur. Ceram. Soc. 39 (2019) 2545– 2558. Crossref

(49). B. Pasha Mahammod, E. Barua, A.B. Deoghare, K.M. Pandey, Mater. Today: Proc. 22 (2020) 1687–1693. Crossref

(50). S. Pathmanapan, P. Periyathambi, S.K. Anandasadagopan, Nanomed: Nanotechnol. Biol. Med. 29 (2020) 102251. Crossref

(51). S.F. Robertson, S. Bose, J. Mech. Behav. Biomed. Mater. (2020) 103945. Crossref

Downloads

Published

2020-10-19

How to Cite

Daulbayev, C., Mansurov, Z., Sultanov, F., Shams, M., Umirzakov, A., & Serovajsky, S. (2020). A Numerical Study of Fluid Flow in the Porous Structure of Biological Scaffolds. Eurasian Chemico-Technological Journal, 22(3), 149–156. https://doi.org/10.18321/ectj974

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>