A Numerical Study of Fluid Flow in the Porous Structure of Biological Scaffolds

Authors

  • Ch. Daulbayev al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan; Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • Z. Mansurov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • F. Sultanov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • M. Shams al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • A. Umirzakov Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • S. Serovajsky al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj974

Keywords:

Biologically soluble scaffolds, Tissue engineering, Fluid flow, 3D printing

Abstract

Tissue engineering (TE) is one of the promising areas that aims to address the global problem of organ and tissue shortages. The successful development of TE, particularly in bone tissue engineering, consists of the use of modern methods that allow the creation of scaffolds, the physicochemical, mechanical, and structural parameters of which will allow achieving the desired clinical results. The vast possibilities of the rapidly developing technology of three-dimensional (3D) printing, which allows the creation of individual scaffolds with high precision, has led to various developments in bone tissue TE. In this work, for the successful use of three-dimensional printing in TE to ensure the diffusion of nutrients during cell cultivation throughout the entire structure of the scaffold, a model of a rotating scaffold is proposed, and the movement of the diffusion flow of nutrient fluid is calculated based on Darcy’s law, which regulates the flow of fluids through porous media. The conducted studies of the rate of diffusion flow of nutrients based on glucose in the porous structure of scaffolds with a 10% content of calcium hydroxyapatite demonstrated the promise of using a model of a rotating composite scaffold in TE of bone tissue. The results show that at a scaffold rotation speed of 12 rpm, the diffusion flow rate of nutrients in the composite scaffolds porous structure is practically not affected by their geometric shape.

References

(1). M.S. Hall, J.T. Decker, L.D. Shea, Biomaterials 255 (2020) 120189. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2020.120189

(2). C. Li, L. Ouyang, J.P.K. Armstrong, M.M. Stevens, Trends Biotechnol. (2020) In press. Crossref DOI: https://doi.org/10.1016/j.tibtech.2020.06.005

(3). I.M. Zurina, V.S. Presniakova, D.V. Butnaru, A.A. Svistunov, P.S. Timashev, Y.A. Rochev, Acta Biomater. 113 (2020) 63–83. Crossref DOI: https://doi.org/10.1016/j.actbio.2020.06.016

(4). M.T. Calejo, T. Ilmarinen, H. Skottman, M. Kellomäki, Acta Biomater. 66 (2018) 44–66. Crossref DOI: https://doi.org/10.1016/j.actbio.2017.11.043

(5). S. Pina, V.P. Ribeiro, O.C. Paiva, V.M. Correlo, J.M. Oliveira, R.L. Reis, Handbook of Tissue Engineering Scaffolds: Volume One, 2019, pp. 165–185. Crossref DOI: https://doi.org/10.1016/B978-0-08-102563-5.00009-5

(6). M.E. Furth, A. Atala, Principles of Tissue Engineering (Fourth Edition), 2014, pp. 83–123. Crossref DOI: https://doi.org/10.1016/B978-0-12-398358-9.00006-9

(7). Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Mater. Sci. Eng. C 31 (2011) 1245–1256. Crossref DOI: https://doi.org/10.1016/j.msec.2011.04.022

(8). A. Haleem, M. Javaid, R.H. Khan, R. Suman, J. Clin. Orthop. Trauma 11 (2020) S118–S124. Crossref DOI: https://doi.org/10.1016/j.jcot.2019.12.002

(9). C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, X. He, S. Tian, J. Liao, B. Lu, Y. Wei, M. Wang, Bioact. Mater. 5 (2020) 82–91. Crossref DOI: https://doi.org/10.1016/j.bioactmat.2020.01.004

(10). J. Zhang, S. Yun, A. Karami, B. Jing, A. Zannettino, Y. Du, H. Zhang, Bioprinting 19 (2020) e00089. Crossref DOI: https://doi.org/10.1016/j.bprint.2020.e00089

(11). C.-H. Li, C.-H. Wu, C.-L. Lin, J. Mech. Behav. Biomed. Mater. 105 (2020) 103700. Crossref DOI: https://doi.org/10.1016/j.jmbbm.2020.103700

(12). L. Wei, S. Wu, M. Kuss, X. Jiang, R. Sun, P. Reid, X. Qin, B. Duan, Bioact. Mater. 4 (2019) 256– 260. Crossref DOI: https://doi.org/10.1016/j.bioactmat.2019.09.001

(13). S. Beg, W.H. Almalki, A. Malik, M. Farhan, M. Aatif, K.S. Alharbi, N.K. Alruwaili, M. Alrobaian, M. Tarique, M. Rahman, Drug Discov. Today (2020) In press. Crossref DOI: https://doi.org/10.1016/j.drudis.2020.07.007

(14). S. Liu, H. Zhang, Q. Hu, Z. Shen, D. Rana, M. Ramalingam, J. Mech. Behav. Biomed. Mater. 104 (2020) 103642. Crossref DOI: https://doi.org/10.1016/j.jmbbm.2020.103642

(15). C.Q. Zhao, X.C. Xu, Y.J. Lu, S.Q. Wu, Z.Y. Xu, T.T. Huang, J.X. Lin, J. Alloy. Compd. 814 (2020) 152327. Crossref DOI: https://doi.org/10.1016/j.jallcom.2019.152327

(16). W. Zhang, I. Ullah, L. Shi, Y. Zhang, H. Ou, J. Zhou, M.W. Ullah, X. Zhang, W. Li, Mater. Design 180 (2019) 107946. Crossref DOI: https://doi.org/10.1016/j.matdes.2019.107946

(17). N.M. Ergul, S. Unal, I. Kartal, C. Kalkandelen, N. Ekren, O. Kilic, L. Chi-Chang, O. Gunduz, Polymer Test. 79 (2019) 106006. Crossref DOI: https://doi.org/10.1016/j.polymertesting.2019.106006

(18). G.E. Dubinenko, A.L. Zinoviev, E.N. Bolbasov, V.T. Novikov, S.I. Tverdokhlebov, Mater. Today: Proc. 22 (2020) 228–234. Crossref DOI: https://doi.org/10.1016/j.matpr.2019.08.092

(19). A. Nakayama, I. Pop, Int. J. Heat and Mass Tran. 34 (1991) 357–367. Crossref DOI: https://doi.org/10.1016/0017-9310(91)90256-E

(20). G. Fragomeni, R. Iannelli, G. Falvo D’Urso Labate, M. Schwentenwein, G. Catapano, New Biotechnol. 52 (2019) 110–120. Crossref DOI: https://doi.org/10.1016/j.nbt.2019.06.001

(21). S. Grossemy, P.P.Y. Chan, P.M. Doran, Biochem. Eng. J. 159 (2020) 107602. Crossref DOI: https://doi.org/10.1016/j.bej.2020.107602

(22). P. Kumar, B. Dey, G.P. Raja Sekhar, Int. J. Eng. Sci. 127 (2018) 201–216. Crossref DOI: https://doi.org/10.1016/j.ijengsci.2018.02.013

(23). I.I. Krashin, L.V. Semendyaeva, A.I. Zinin, G.A. Zinina. Elsevier Geo-Engineering Book Series 2 (2004) 679–684. Crossref DOI: https://doi.org/10.1016/S1571-9960(04)80118-6

(24). E.A. Botchwey, S.R. Pollack, E.M. Levine, E.D. Johnston, C.T. Laurencin, J. Biomed. Mater. Res. A 69A (2004) 205–215. Crossref DOI: https://doi.org/10.1002/jbm.a.10163

(25). L.V. Gonzalez Gil, H. Singh, J. de Sa. da Silva, D.P. dos Santos, D.T. Covas, K. Swiech, C.A. Torres Suazo, Biochem. Eng. J. 162 (2020) 107710. Crossref DOI: https://doi.org/10.1016/j.bej.2020.107710

(26). B.S. Borys, A. Le, E.L. Roberts, T. Dang, L. Rohani, C.Y.-M. Hsu, A.A. Wyma, D.E. Rancourt, I.D. Gates, M.S. Kallos, J. Biotechnol. 304 (2019) 16–27. Crossref DOI: https://doi.org/10.1016/j.jbiotec.2019.08.002

(27). P. Yu, T.S. Lee, Y. Zeng, H.T. Low, Int. J. Heat Mass Tran. 52 (2009) 316–327. Crossref DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.021

(28). M. Ciofalo, M.W. Collins, T.R. Hennessy, Med. Eng. Phys. 18 (1996) 437–451. Crossref DOI: https://doi.org/10.1016/1350-4533(95)00081-X

(29). Ch.B. Daulbaev, T.P. Dmitriev, F.R. Sultanov, Z.A. Mansurov, E.T. Aliev, J. Eng. Phys. Thermophy. 90 (2017) 1115–1118. Crossref DOI: https://doi.org/10.1007/s10891-017-1665-z

(30). Ch. Daulbayev, Z. Mansurov, G. Mitchell, A. Zakhidov, Eurasian Chem.-Technol. J. 20 (2018) 119–124. Crossref DOI: https://doi.org/10.18321/ectj690

(31). F. Sultanov, C. Daulbayev, B. Bakbolat, O. Daulbayev, M. Bigaj, Z. Mansurov, K. Kuterbekov, K. Bekmyrza, Chem. Phys. Lett. 737 (2019) 136821. Crossref DOI: https://doi.org/10.1016/j.cplett.2019.136821

(32). F. Sultanov, B. Bakbolat, Z. Mansurov, Z. Azizov, S.-S. Pei, R. Ebrahim, C. Daulbayev, A. Urazgaliyeva, M. Tulepov, Eurasian Chem.- Technol. J. 19 (2017) 127–132. Crossref DOI: https://doi.org/10.18321/ectj286

(33). F.R. Sultanov, C. Daulbayev, B. Bakbolat, Z.A. Mansurov, A.A. Urazgaliyeva, R. Ebrahim, S.S. Pei, K.-P. Huang, Carbon Lett. 30 (2020) 81–92. Crossref DOI: https://doi.org/10.1007/s42823-019-00073-5

(34). F.R. Sultanov, Ch. Daulbayev, B. Bakbolat, Z.A. Mansurov, Eurasian Chem.-Technol. J. 20 (2018) 195–200. Crossref DOI: https://doi.org/10.18321/ectj721

(35). D.A. Zopf, C.L. Flanagan, A.G. Mitsak, J.R. Brennan, S.J. Hollister, Int. J. Pediatr. Otorhi. 114 (2018) 170–174. Crossref DOI: https://doi.org/10.1016/j.ijporl.2018.07.033

(36). M. Hemshekhar, R.M. Thushara, S. Chandranayaka, L.S. Sherman, K. Kemparaju, K.S. Girish, Int. J. Biol. Macromol. 86 (2016) 917–928. Crossref DOI: https://doi.org/10.1016/j.ijbiomac.2016.02.032

(37). M. Milojević, L. Gradišnik, J. Stergar, M. Skelin Klemen, A. Stožer, M. Vesenjak, P. Dobnik Dubrovski, T. Maver, T. Mohan, K. Stana Kleinschek, U. Maver, Appl. Surf. Sci. 488 (2019) 836–852. Crossref DOI: https://doi.org/10.1016/j.apsusc.2019.05.283

(38). M.U.A. Khan, S. Haider, S.A. Shah, S.I.A. Razak, S.A. Hassan, M.R.A. Kadir, A. Haider, Int. J. Biol. Macromol. 151 (2020) 584–594. Crossref DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.142

(39). M. Ramadas, K. El Mabrouk, A.M. Ballamurugan, Mater. Chem. Phys. 242 (2020) 122456. Crossref DOI: https://doi.org/10.1016/j.matchemphys.2019.122456

(40). B.W.M. de Wildt, S. Ansari, N.A.J.M. Sommerdijk, K. Ito, A. Akiva, S. Hofmann, Curr. Opin. Biomed. Eng. 10 (2019) 107–115. Crossref DOI: https://doi.org/10.1016/j.cobme.2019.05.005

(41). C.M. Agrawal, J.S. McKinney, D. Lanctot, K.A. Athanasiou, Biomaterials 21 (2000) 2443–2452. Crossref DOI: https://doi.org/10.1016/S0142-9612(00)00112-5

(42). D. Ali, M. Ozalp, S.B.G. Blanquer, S. Onel, Eur. J. Mech. B-Fluid. 79 (2020) 376–385. Crossref DOI: https://doi.org/10.1016/j.euromechflu.2019.09.015

(43). H. Seddiqi, A. Saatchi, G. Amoabediny, M.N. Helder, S.A. Ravasjani, M.S. Hajat Aghaei, J. Jin, B. Zandieh-Doulabi, J. Klein-Nulend, Comput. Biol. Med. 24 (2020) 103826. Crossref DOI: https://doi.org/10.1016/j.compbiomed.2020.103826

(44). M. Malvè, D.J. Bergstrom, X.B. Chen, Int. Commun. Heat Mass Trans. 96 (2018) 53–60. Crossref J. Zvicer, A. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2018.05.014

(45). Medic, D. Veljovic, S. Jevtic, S. Novak, B. Obradovic, Polymer Test. 76 (2019) 464–472. Crossref DOI: https://doi.org/10.1016/j.polymertesting.2019.04.004

(46). G. Belgheisi, M.H. Nazarpak, M.S. Hashjin, Appl. Clay Sci. 185 (2020) 105434. Crossref DOI: https://doi.org/10.1016/j.clay.2019.105434

(47). A. Abdal-hay, N.T. Raveendran, B. Fournier, S. Ivanovski, Compos. Part B-Eng. 197 (2020) 108158. Crossref DOI: https://doi.org/10.1016/j.compositesb.2020.108158

(48). J. Mesquita-Guimarães, L. Ramos, R. Detsch, B. Henriques, M.C. Fredel, F.S. Silva, A.R. Boccaccini, J. Eur. Ceram. Soc. 39 (2019) 2545– 2558. Crossref DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.01.029

(49). B. Pasha Mahammod, E. Barua, A.B. Deoghare, K.M. Pandey, Mater. Today: Proc. 22 (2020) 1687–1693. Crossref DOI: https://doi.org/10.1016/j.matpr.2020.02.186

(50). S. Pathmanapan, P. Periyathambi, S.K. Anandasadagopan, Nanomed: Nanotechnol. Biol. Med. 29 (2020) 102251. Crossref DOI: https://doi.org/10.1016/j.nano.2020.102251

(51). S.F. Robertson, S. Bose, J. Mech. Behav. Biomed. Mater. (2020) 103945. Crossref DOI: https://doi.org/10.1016/j.jmbbm.2020.103945

Downloads

Published

19-10-2020

How to Cite

Daulbayev, C., Mansurov, Z., Sultanov, F., Shams, M., Umirzakov, A., & Serovajsky, S. (2020). A Numerical Study of Fluid Flow in the Porous Structure of Biological Scaffolds. Eurasian Chemico-Technological Journal, 22(3), 149–156. https://doi.org/10.18321/ectj974

Issue

Section

Article

Most read articles by the same author(s)

1 2 > >>