Silica from Kazakhstan Rice Husk as an Anode Material for LIBs

Authors

  • I. Kurmanbayeva National Laboratory Astana, 53 Kabanbay batyr ave, Astana, Kazakhstan
  • A. Mentbayeva School of Engineering, Nazarbayev University, 53 Kabanbay batyr ave, Astana, Kazakhstan
  • A. Sadykova National Laboratory Astana, 53 Kabanbay batyr ave, Astana, Kazakhstan
  • A. Adi National Laboratory Astana, 53 Kabanbay batyr ave, Astana, Kazakhstan
  • Z. Mansurov Institute of Combustion Problem, 172 Bogenbay batyr Str, Almaty, Kazakhstan
  • Z. Bakenov National Laboratory Astana, 53 Kabanbay batyr ave, Astana, Kazakhstan; School of Engineering, Nazarbayev University, 53 Kabanbay batyr ave, Astana, Kazakhstan

DOI:

https://doi.org/10.18321/ectj794

Keywords:

silica, rice husk, anode, lithium-ion battery, plant waste

Abstract

This paper reports the synthesis of the silica (SiO2) from Kyzylorda rice husk (RH) and investigation of its electrochemical behaviour as an anode material for the lithium-ion battery. Rice husk, considered as agricultural waste material, contains a substantial amount of amorphous silica, carbon, and minor other mineral composition, which have potential industrial and scientific applications. Due to the high theoretical capacity of silicon (4200 mAh g-1) and silicon dioxide (1965 mAh g-1), Si-containing compounds are considered as a promising candidate for a new generation of anode materials for lithium-ion batteries. In this work, the technology of amorphous SiO2 extraction from Kyzylorda region rice husk is developed. The silica powder was obtained by burning the rice husk and treating the obtained ash with the sodium hydroxide and hydrochloric acid. The extracted SiO2 and intermediate products were studied by the SEM, XRD, XRF, XPS, TGA in comparison with commercial silica. The RH of the Kyzylorda region has 12% of Si. The electrochemical characteristics of assembled coin cell type battery were tested by using cyclic voltammetry and galvanostatic charge/discharge cycling. Results show that silica synthesized from agriculture waste has the same performance as commercial analog. The initial discharge capacity of the battery with synthesized silicon dioxide was 1049 mAhg-1. The reversible discharge capacity in the second and subsequent cycles is about 438 mAhg-1.

References

(1). R Pode, Renew. Sust. Energ. Rev. 53 (2016) 1468–1485. Crossref DOI: https://doi.org/10.1016/j.rser.2015.09.051

(2). R. Prasad, M. Pandey, Bulletin of Chemical Reaction Engineering &Catalysis 7 (2012) 1-25. Crossref DOI: https://doi.org/10.9767/bcrec.7.1.1216.1-25

(3). Kumar, K. Mohanta, D. Kumar, O. Parkash, Int. J. Emerg. Technol. Adv. Eng. 2 (2012) 86–90.

(4). A. Abbas, S. Ansumali, Bioenerg. Res. 3 (2010) 328–334. Crossref DOI: https://doi.org/10.1007/s12155-010-9088-0

(5). K. Basappaji, N. Nagesha, International Journal of Applied Engineering Research 8 (2013) 1783–1790.

(6). M.F. Serra, M.S. Conconi, M.R. Gauna, G. Suárez, E.F. Aglietti, N.M. Rendtorff, Journal of Asian Ceramic Societies 461 (2016) 61–67. Crossref DOI: https://doi.org/10.1016/j.jascer.2015.11.003

(7). V.I. Sergienko, L.A. Zemnuhova, A.G. Yegorov, Y.D. Shkorina, N.S. Vasilyuk, Russian Chemical Journal [Journal of the Russian Chemical Society after D.I. Mendeleev] 3 (2004) 116–124 (in Russian).

(8). A. Mehta, R. P. Ugwekar, Int. Journal of Engineering Research and Applications 5 (2015) 43–48.

(9). R.M. Mohamed, I.A. Mkhalid, M.A. Barakat, Arab. J. Chem. 8 (2015) 48–53. Crossref DOI: https://doi.org/10.1016/j.arabjc.2012.12.013

(10). J. Kaewkhao, P. Limsuwan, Procedia Engineering 32 (2012) 670–675. Crossref DOI: https://doi.org/10.1016/j.proeng.2012.01.1325

(11). D. Gupta, A. Kumar, Journal of Rock Mechanics and Geotechnical Engineering 9 (2017) 159–69. Crossref DOI: https://doi.org/10.1016/j.jrmge.2016.05.010

(12). S.C. Bhattacharyya, Biomass and bioenergy 68 (2014) 44–54. Crossref DOI: https://doi.org/10.1016/j.biombioe.2014.06.002

(13). R. Dhir, J. Brito, G. Ghataora, C. Qun Lye, Sustainable Construction Materials. Woodhead Publishing, Cambridge, UK, 2018, p. 476, ISBN 978-0-08-100984-0

(14). M. Ali, M.A. Tindyala, Journal of Asian Ceramic Societies 3 (2015) 311–316. Crossref DOI: https://doi.org/10.1016/j.jascer.2015.06.003

(15). Y. Zhao, Z. Lui, Y. Zung, A. Mentbayeva, X. Wang, M. Maximov, B. Lui, Z. Bakenov, F. Yin, Nanoscale Res. Lett. 12 (2017) 459. Crossref DOI: https://doi.org/10.1186/s11671-017-2226-2

(16). X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, Adv. Energ. Mater. 4 (2014) 1300882. Crossref DOI: https://doi.org/10.1002/aenm.201300882

(17). D.S. Jung, M. Ryou, Y. Sung, S. Park, J.W. Choi, P. Natl. Acad. Sci. USA 110 (2013) 12229–12234. Crossref DOI: https://doi.org/10.1073/pnas.1305025110

(18). A. Casimir, H. Zhang, O. Ogoke, J. Amine, J. Lu, G. Wu, Nano Energy. 27 (2016) 359–376. Crossref DOI: https://doi.org/10.1016/j.nanoen.2016.07.023

(19). Y. Shen, J. Agr. Food Chem. 65 (2017) 995– 1004. Crossref DOI: https://doi.org/10.1021/acs.jafc.6b04777

(20). J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen, J. Sun, ACS Appl. Mater. Inter. 8 (2016) 30239–30247. Crossref DOI: https://doi.org/10.1021/acsami.6b10260

(21). J. Cui, F. Cheng, J. Lin, J. Yang, K. Jiang, Z. Wen, Powder Technol. 311 (2017) 1–8. Crossref DOI: https://doi.org/10.1016/j.powtec.2017.01.083

(22). N. Liu, K. Huo, M. McDowell, J. Zhao, J. Cui, Sci. Rep. 3 (2013) 1919. Crossref DOI: https://doi.org/10.1038/srep01919

(23). W. Chen, Z. Fan, A. Dhanabalan, C. Chen, C. Wang, J. Electrochem. Soc. 158 (2011) A1055– A1059. Crossref DOI: https://doi.org/10.1149/1.3611433

(24). K.K. Unger, N. Tanaka, E. Machtejevas, Monolithic Silicas in Separation Science: Concepts, Syntheses, Characterization, Modeling and Applications, First Edition, WILEY-VCH Verlag GmbH&Co KGaA, Weinheim, Germany, 2011, p. 362. Crossref DOI: https://doi.org/10.1002/9783527633241

(25). O.W. Flörke, H.A. Graetsch, F. Brunk, L. Benda, S. Paschen, H.E. Bergna, W.O. Roberts, W.A. Welsh, C. Libanati, M. Ettlinger, D. Kerner, M. Maier, W. Meon, R. Schmoll, H. Gies, D. Schiffmann. "Silica". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. p. 455. Crossref DOI: https://doi.org/10.1002/14356007.a23_583.pub3

(26). H. Riveros, C. Garza, Journal of Crystal Grows 75 (1986) 126–131. Crossref DOI: https://doi.org/10.1016/0022-0248(86)90233-2

(27). R.A. Bakara, R. Yahyaa, S.N. Gan, Procedia Chemistry 9 (2016) 189–195. Crossref DOI: https://doi.org/10.1016/j.proche.2016.03.092

(28). S. Azat, A. Korobeinyk, N. Meirbekov, B. Topanov, R. Kazakevych, R. Whitby, Z. A. Mansurov. Nano-SiO2 from rice husk ash, synthesis and characterization, Proc. IX Intern. Symp. “Physics and Chemistry of Carbon Materials/Nanoengineering”, Almaty, 2016, p. 28–30.

(29). Q. Sun, B. Zhang, Z.W. Fu, Appl. Surf. Sci. 254 (2008) 3774–3779. Crossref DOI: https://doi.org/10.1016/j.apsusc.2007.11.058

(30). B. Guo, J. Shu, Z. Wang, H. Yang, L. Shi, Y. Liu, L. Chen, Electrochem. Commun. 10 (2008) 1876–1878. Crossref DOI: https://doi.org/10.1016/j.elecom.2008.09.032

(31). Y. Yu, J. Zhang, L. Xue, T. Huang, A. Yu. J. Power Sources 196 (2011) 10240–10243. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2011.08.009

Downloads

Published

20-02-2019

How to Cite

Kurmanbayeva, I., Mentbayeva, A., Sadykova, A., Adi, A., Mansurov, Z., & Bakenov, Z. (2019). Silica from Kazakhstan Rice Husk as an Anode Material for LIBs. Eurasian Chemico-Technological Journal, 21(1), 75–81. https://doi.org/10.18321/ectj794

Issue

Section

Article

Most read articles by the same author(s)

1 2 3 > >>