Effect of Lattice Structure and Composite Precursor on Mechanical Properties of 3D-Printed Bone Scaffolds

Authors

  • M. Shams al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • Z. Mansurov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • C. Daulbayev al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • B. Bakbolat al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1129

Keywords:

bone scaffolds, 3D printing, hydroxyapatite, stereolithography, calcium pyrophosphate, bioscaffold

Abstract

This article presents an investigation on designing and fabricating scaffolds with different structures, desired porosity, composition, and surface area to volume ratio (SA:V) for orthopedic applications by using the computer-aided design (CAD) and the stereolithography (SLA) 3D printing technique. Different triply periodic minimal surfaces (TPMS) and functionally graded lattice structures (FGLS) were designed based on various cell geometries. Finite element analysis (FEA), tensile and compression tests were carried out, and the results are presented. Two different resin compositions were used to print the models and compare the effect of resin precursors on the mechanical properties of scaffolds. The first was a biodegradable resin made from soybean oil commercially available on the market (made by Anycubic Co.). The second was a mixture of biodegradable UV-cured resin with 5% W/W of hydroxyapatite (HA) and 5% W/W calcium pyrophosphate (CPP). Bio-Hydroxyapatite and Bio-Calcium Pyrophosphate were obtained from eggshells waste and characterized using XRD and FESEM. The obtained data show that adding resin precursors (HA/CPP) slightly decreases the mechanical strength of printed scaffolds; however, considering their extraordinary effect on bone regeneration, this small effect can be ignored, and HA/CPP can be used as an ideal agent in bioscaffolds.

 

References

(1). U. Jammalamadaka, K. Tappa, J. Funct. Biomater. 9 (2018) 22. Crossref DOI: https://doi.org/10.3390/jfb9010022

(2). A.-V. Do, B. Khorsand, S.M. Geary, A.K. Salem, Adv. Healthc. Mater. 4 (2015) 1742–1762. Crossref DOI: https://doi.org/10.1002/adhm.201500168

(3). A.A.M. Shimojo, I.C.P. Rodrigues, A.G.M. Perez, E.M.B. Souto, L.P. Gabriel, T. Webster (2020) Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization. In: Li B., Moriarty T., Webster T., Xing M. (eds) Racing for the Surface. Springer, Cham. Crossref DOI: https://doi.org/10.1007/978-3-030-34471-9_23

(4). J.J. Chung, H. Im, S.H. Kim, J.W. Park, Y. Jung, Front. Bioeng. Biotechnol. 8 (2020). Crossref DOI: https://doi.org/10.3389/fbioe.2020.586406

(5). K. Wang, X. Xie, J. Wang, A. Zhao, Y. Peng, Y. Rao, Results Phys. 18 (2020) 103346. Crossref DOI: https://doi.org/10.1016/j.rinp.2020.103346

(6). Q. Ma, M.R.M. Rejab, A.P. Kumar, H. Fu, N.M. Kumar, J. Tang, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235 (2020) 4254–4272. Crossref DOI: https://doi.org/10.1177/0954406220971667

(7). M. Bahraminasab, K.L. Edwards, (2019) Computational Tailoring of Orthopaedic Biomaterials: Design Principles and Aiding Tools. In: Bains P., Sidhu S., Bahraminasab M., Prakash C. (eds) Biomaterials in Orthopaedics and Bone Regeneration. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. Crossref DOI: https://doi.org/10.1007/978-981-13-9977-0_2

(8). H. Lin, D. Zhang, P.G. Alexander, G. Yang, J. Tan, A.W.-M. Cheng, R.S. Tuan, Biomaterials 34 (2013) 331–339. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2012.09.048

(9). G. Noussios, K. Theologou, P. Chouridis, G. Karavasilis, G. Alafostergios, A. Katsourakis, J. Clin. Med. Res. 11 (20119) 740–744. Crossref DOI: https://doi.org/10.14740/jocmr3986

(10). S. Terekhina, I. Skornyakov, T. Tarasova, S. Egorov, Technologies 7 (2019) 57. Crossref DOI: https://doi.org/10.3390/technologies7030057

(11). H. Sharda, A. Kumar, A View on Why Infill Ratio and Infill Type is the Backbone of the Strength of 3D Printing Models in Affordable Printing, International Journal for Scientific Research and Development 7 (2019) 589–591.

(12). A. Chapman, E. Naseri, S. Wheatley, R.A. Tasker, A. Ahmadi, Progress in Canadian Mechanical Engineering 3 (2020). Crossref DOI: https://doi.org/10.32393/csme.2020.1288

(13). S.V. Murphy, A. Atala, Nat. Biotechnol. 32 (2014) 773–785. Crossref DOI: https://doi.org/10.1038/nbt.2958

(14). K. Byrappa, M. Yoshimura, History of Hydrothermal Technology. Handbook of Hydrothermal Technology (2 Ed.) 2013, p. 51– 73. Crossref DOI: https://doi.org/10.1016/B978-0-12-375090-7.00002-5

(15). F. Ahmed, A. Azam, M.M. Khan, S.M. Mugo, J. Nanomater. 2018, Article ID 3692420. Crossref DOI: https://doi.org/10.1155/2018/3692420

(16). Z.A. Mansurov, Eurasian Chem.-Technol. J. 22 (2020) 241–253. Crossref DOI: https://doi.org/10.18321/ectj994

(17). C. Daulbayev, Z. Mansurov, F. Sultanov, M. Shams, A. Umirzakov, S. Serovajsky, Eurasian Chem.-Technol. J. 22 (2020) 149–156. Crossref DOI: https://doi.org/10.18321/ectj974

(18). C. Daulbayev, F. Sultanov, B. Bakbolat, O. Daulbayev, Int. J. Hydrogen Energy 45 (2020) 33325–33342. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.09.101

(19). T.H.A. Corrêa, J.N.F. Holanda, Ceramica 62 (2016) 278–280. Crossref DOI: https://doi.org/10.1590/0366-69132016623631986

(20). C. Daulbayev, F. Sultanov, M. Aldasheva, A. Abdybekova, B. Bakbolat, M. Shams, A. Chekiyeva, Z. Mansurov, Comptes Rendus. Chim. 24 (2021) 1–9. Crossref DOI: https://doi.org/10.5802/crchim.58

(21). S.C. Wu, H.C. Hsu, S.K. Hsu, Y.C. Chang, W.F. Ho, Ceram. Int. 41 (2015) 10718–10724. Crossref DOI: https://doi.org/10.1016/j.ceramint.2015.05.006

(22). R. Pugliese, B. Beltrami, S. Regondi, C. Lunetta, Annals of 3D Printed Medicine 2 (2021) 100011. Crossref DOI: https://doi.org/10.1016/j.stlm.2021.100011

(23). J.W. Stansbury, M.J. Idacavage, Dent. Mater. 32 (2016) 54–64. Crossref DOI: https://doi.org/10.1016/j.dental.2015.09.018

(24). S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Chem. Rev. 117 (2017) 10212–10290. Crossref DOI: https://doi.org/10.1021/acs.chemrev.7b00074

(25). H. Czichos, T. Saito, L.E. Smith, Springer Handbook of Materials Measurement Methods, Springer Handb. Mater. Meas. Methods, 2006, Crossref DOI: https://doi.org/10.1007/978-3-540-30300-8

(26). A. Fritsch, L. Dormieux, C. Hellmich, J. Sanahuja, J. Biomed. Mater. Res. Part A 88 (2009) 149–161. Crossref DOI: https://doi.org/10.1002/jbm.a.31727

(27). D.S. Nguyen, T.A. Nguyen-Van, J. Korean Soc. Precis. Eng. 37 (2020) 305–318. Crossref DOI: https://doi.org/10.7736/JKSPE.019.100

Downloads

Published

31-12-2021

How to Cite

Shams, M., Mansurov, Z., Daulbayev, C., & Bakbolat, B. (2021). Effect of Lattice Structure and Composite Precursor on Mechanical Properties of 3D-Printed Bone Scaffolds. Eurasian Chemico-Technological Journal, 23(4), 257‒266. https://doi.org/10.18321/ectj1129

Issue

Section

Article

Most read articles by the same author(s)

1 2 > >>