Effect of Lattice Structure and Composite Precursor on Mechanical Properties of 3D-Printed Bone Scaffolds
DOI:
https://doi.org/10.18321/ectj1129Keywords:
bone scaffolds, 3D printing, hydroxyapatite, stereolithography, calcium pyrophosphate, bioscaffoldAbstract
This article presents an investigation on designing and fabricating scaffolds with different structures, desired porosity, composition, and surface area to volume ratio (SA:V) for orthopedic applications by using the computer-aided design (CAD) and the stereolithography (SLA) 3D printing technique. Different triply periodic minimal surfaces (TPMS) and functionally graded lattice structures (FGLS) were designed based on various cell geometries. Finite element analysis (FEA), tensile and compression tests were carried out, and the results are presented. Two different resin compositions were used to print the models and compare the effect of resin precursors on the mechanical properties of scaffolds. The first was a biodegradable resin made from soybean oil commercially available on the market (made by Anycubic Co.). The second was a mixture of biodegradable UV-cured resin with 5% W/W of hydroxyapatite (HA) and 5% W/W calcium pyrophosphate (CPP). Bio-Hydroxyapatite and Bio-Calcium Pyrophosphate were obtained from eggshells waste and characterized using XRD and FESEM. The obtained data show that adding resin precursors (HA/CPP) slightly decreases the mechanical strength of printed scaffolds; however, considering their extraordinary effect on bone regeneration, this small effect can be ignored, and HA/CPP can be used as an ideal agent in bioscaffolds.
References
(1). U. Jammalamadaka, K. Tappa, J. Funct. Biomater. 9 (2018) 22. Crossref
(2). A.-V. Do, B. Khorsand, S.M. Geary, A.K. Salem, Adv. Healthc. Mater. 4 (2015) 1742–1762. Crossref
(3). A.A.M. Shimojo, I.C.P. Rodrigues, A.G.M. Perez, E.M.B. Souto, L.P. Gabriel, T. Webster (2020) Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization. In: Li B., Moriarty T., Webster T., Xing M. (eds) Racing for the Surface. Springer, Cham. Crossref
(4). J.J. Chung, H. Im, S.H. Kim, J.W. Park, Y. Jung, Front. Bioeng. Biotechnol. 8 (2020). Crossref
(5). K. Wang, X. Xie, J. Wang, A. Zhao, Y. Peng, Y. Rao, Results Phys. 18 (2020) 103346. Crossref
(6). Q. Ma, M.R.M. Rejab, A.P. Kumar, H. Fu, N.M. Kumar, J. Tang, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235 (2020) 4254–4272. Crossref
(7). M. Bahraminasab, K.L. Edwards, (2019) Computational Tailoring of Orthopaedic Biomaterials: Design Principles and Aiding Tools. In: Bains P., Sidhu S., Bahraminasab M., Prakash C. (eds) Biomaterials in Orthopaedics and Bone Regeneration. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. Crossref
(8). H. Lin, D. Zhang, P.G. Alexander, G. Yang, J. Tan, A.W.-M. Cheng, R.S. Tuan, Biomaterials 34 (2013) 331–339. Crossref
(9). G. Noussios, K. Theologou, P. Chouridis, G. Karavasilis, G. Alafostergios, A. Katsourakis, J. Clin. Med. Res. 11 (20119) 740–744. Crossref
(10). S. Terekhina, I. Skornyakov, T. Tarasova, S. Egorov, Technologies 7 (2019) 57. Crossref
(11). H. Sharda, A. Kumar, A View on Why Infill Ratio and Infill Type is the Backbone of the Strength of 3D Printing Models in Affordable Printing, International Journal for Scientific Research and Development 7 (2019) 589–591.
(12). A. Chapman, E. Naseri, S. Wheatley, R.A. Tasker, A. Ahmadi, Progress in Canadian Mechanical Engineering 3 (2020). Crossref
(13). S.V. Murphy, A. Atala, Nat. Biotechnol. 32 (2014) 773–785. Crossref
(14). K. Byrappa, M. Yoshimura, History of Hydrothermal Technology. Handbook of Hydrothermal Technology (2 Ed.) 2013, p. 51– 73. Crossref
(15). F. Ahmed, A. Azam, M.M. Khan, S.M. Mugo, J. Nanomater. 2018, Article ID 3692420. Crossref
(16). Z.A. Mansurov, Eurasian Chem.-Technol. J. 22 (2020) 241–253. Crossref
(17). C. Daulbayev, Z. Mansurov, F. Sultanov, M. Shams, A. Umirzakov, S. Serovajsky, Eurasian Chem.-Technol. J. 22 (2020) 149–156. Crossref
(18). C. Daulbayev, F. Sultanov, B. Bakbolat, O. Daulbayev, Int. J. Hydrogen Energy 45 (2020) 33325–33342. Crossref
(19). T.H.A. Corrêa, J.N.F. Holanda, Ceramica 62 (2016) 278–280. Crossref
(20). C. Daulbayev, F. Sultanov, M. Aldasheva, A. Abdybekova, B. Bakbolat, M. Shams, A. Chekiyeva, Z. Mansurov, Comptes Rendus. Chim. 24 (2021) 1–9. Crossref
(21). S.C. Wu, H.C. Hsu, S.K. Hsu, Y.C. Chang, W.F. Ho, Ceram. Int. 41 (2015) 10718–10724. Crossref
(22). R. Pugliese, B. Beltrami, S. Regondi, C. Lunetta, Annals of 3D Printed Medicine 2 (2021) 100011. Crossref
(23). J.W. Stansbury, M.J. Idacavage, Dent. Mater. 32 (2016) 54–64. Crossref
(24). S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Chem. Rev. 117 (2017) 10212–10290. Crossref
(25). H. Czichos, T. Saito, L.E. Smith, Springer Handbook of Materials Measurement Methods, Springer Handb. Mater. Meas. Methods, 2006, Crossref
(26). A. Fritsch, L. Dormieux, C. Hellmich, J. Sanahuja, J. Biomed. Mater. Res. Part A 88 (2009) 149–161. Crossref
(27). D.S. Nguyen, T.A. Nguyen-Van, J. Korean Soc. Precis. Eng. 37 (2020) 305–318. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.