Density Functional Theory Investigation of Intermolecular Interactions for Hydrogen-Bonded Deep Eutectic Solvents

Authors

  • B. Myrzakhmetov Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr ave. 53, Astana, Kazakhstan; Laboratory of Energy Storage Systems, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr ave. 53, Astana, Kazakhstan
  • M. Karibayev Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr ave. 53, Astana, Kazakhstan
  • Y. Wang Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr ave. 53, Astana, Kazakhstan; Laboratory of Computational Materials Science for Energy Applications, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr ave. 53, Astana, Kazakhstan
  • A. Mentbayeva Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr ave. 53, Astana, Kazakhstan; Laboratory of Energy Storage Systems, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr ave. 53, Astana, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1563

Keywords:

deep eutectic solvents, choline chloride, ethylene glycol, intermolecular interactions, density functional theory

Abstract

Examining the interplay between choline chloride (ChCl) and ethylene glycol (EG) in Deep Eutectic Solvents (DES) assumes a pivotal role in designing innovative solvents. According to the literature, the comprehensive analysis of all possible types of conformers of ChCl and EG-based DES was scarce at different ratios, highlighting a gap in understanding at the atomistic level. In this study, we address this gap through a detailed Density Functional Theory calculation with dispersion correction (DFT+D3). Employing Density Functional Theory (DFT) calculations, our investigation delves into intermolecular relationships within DES, particularly focusing on ChCl and EG-based DES. DFT outcomes highlight the 1:2 ChCl to EG based DES ratio as notably more stable than alternative conformers. Key interactions within this DES conformation include: i) choline-chloride charge centers, ii) choline-EG links, and iii) EG-chloride anion associations. These findings provide valuable insights for crafting advanced solvents with tailored attributes. The intricate intermolecular interplay demonstrated here offers a versatile framework for harnessing DES potential across various domains, from chemical engineering to sustainable technologies.

References

(1). J. Hao, X. Li, S. Yu, et al., J. Energy Chem. 24 (2015) 199‒206. Crossref DOI: https://doi.org/10.1016/S2095-4956(15)60301-1

(2). B. Myrzakhmetov, A. Akhmetova, A. Bissenbay, et al., Royal Society Open Science 10 (2023) 230843. Crossref DOI: https://doi.org/10.1098/rsos.230843

(3). K. Hooshyari, M. Javanbakht, M. Adibi, Elecrochem. Acta 205 (2016) 142‒152. Crossref DOI: https://doi.org/10.1016/j.electacta.2016.04.115

(4). F.S. Ghareh Bagh, F.S. Mjalli, M.A. Hashim, et al., J. Chem. Eng. Data 58 (2013) 2154‒2162. Crossref DOI: https://doi.org/10.1021/je400045d

(5). G.R. Jenkin, A.Z. Al-Bassam, R.C. Harris, et al., Miner. Eng. 87 (2016) 18–24. Crossref DOI: https://doi.org/10.1016/j.mineng.2015.09.026

(6). A.P. Abbott, G. Capper, K.J. McKenzie, K.S. Ryder, J. Electroanal. Chem. 599 (2007) 288–294. Crossref DOI: https://doi.org/10.1016/j.jelechem.2006.04.024

(7). G. Garcia, M. Atilhan, S. Aparicio, J. Phys. Chem. C 119 (2015) 21413–21425. Crossref DOI: https://doi.org/10.1021/acs.jpcc.5b04585

(8). C. Florindo, F.S. Oliveira, L.P.N. Rebelo, et al., ACS Sustain. Chem. Eng. 2 (2014) 2416–2425. Crossref DOI: https://doi.org/10.1021/sc500439w

(9). E. Durand, J. Lecomte, P. Villeneuve, Eur. J. Lipid Sci. Tech. 115 (2016) 379–385. Crossref DOI: https://doi.org/10.1002/ejlt.201200416

(10). B. Jiang, H. Dou, L. Zhang, et al., J. Membr. Sci. 536 (2017) 123–132. Crossref DOI: https://doi.org/10.1016/j.memsci.2017.05.004

(11). E.S.C. Ferreira, I.V. Voroshylova, N.M. Figueiredo, M.N.D.S. Cordeiro, J. Chem. Phys. 155 (2021) 064506. Crossref DOI: https://doi.org/10.1063/5.0058561

(12). B. Doherty, O. Acevedo, J. Phys. Chem. B 122 (2018) 9982–9993. Crossref DOI: https://doi.org/10.1021/acs.jpcb.8b06647

(13). J.P Bittner, I. Smirnova, S. Jakobtorweihen, Molecules 29 (2024) 703. Crossref DOI: https://doi.org/10.3390/molecules29030703

(14). M. Karibayev, D. Bekeshov, B. Myrzakhmetov, et al., Eurasian Chem.-Technol. J. 25 (2023) 89‒102. Crossref DOI: https://doi.org/10.18321/ectj1499

(15). M.Q. Farooq, N.M. Abbasi, J.L. Anderson, J. Chromatogr. A 1633 (2020) 461613. Crossref DOI: https://doi.org/10.1016/j.chroma.2020.461613

(16). V. Migliorati, F. Sessa, P. D’Angelo, Chem. Phys. Lett. 737 (2019) 100001. Crossref DOI: https://doi.org/10.1016/j.cpletx.2018.100001

(17). R. Svigelj, R. Toniolo, C. Bertoni, A. Fraleoni- Morgera, Sensors 24 (2024) 2403. Crossref DOI: https://doi.org/10.3390/s24082403

(18). D. Carriazo, M.C. Serrano, M.C. Gutiérrez, et al., Chem. Soc. Rev. 41 (2012) 4996–5014. Crossref DOI: https://doi.org/10.1039/c2cs15353j

(19). S. Zahn, B. Kirchner, D. Mollenhauer, ChemPhysChem 17 (2016) 3354–3358. Crossref DOI: https://doi.org/10.1002/cphc.201600348

(20). P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623–11627. Crossref DOI: https://doi.org/10.1021/j100096a001

(21). B. Mennucci, WIREs Comput. Mol. Sci. 2 (2012) 386–404. Crossref DOI: https://doi.org/10.1002/wcms.1086

(22). P.M. Gill, B.G. Johnson, J.A. Pople, M.J. Frisch, Chem. Phys. Lett. 197 (1992) 499–505. Crossref DOI: https://doi.org/10.1016/0009-2614(92)85807-M

(23). E. De Castro, F. Jorge, J. Chem. Phys. 108 (1998) 5225–5229. Crossref DOI: https://doi.org/10.1063/1.475959

(24). M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. Nakatsuji, et al., G16 c01. gaussian 16, revision c. 01, gaussian, Inc., Wallin 248 (2016).

(25). T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580– 592. Crossref DOI: https://doi.org/10.1002/jcc.22885

(26). C. Carlesi, R.C. Harris, A.P. Abbott, G.R. Jenkin, Minerals 12 (2022) 65. Crossref DOI: https://doi.org/10.3390/min12010065

(27). R.B. Leron, M.H. Li, Thermochim. Acta 551 (2013) 14–19. Crossref DOI: https://doi.org/10.1016/j.tca.2012.09.041

(28). F. Gabriele, M. Chiarini, R. Germani, et al., J. Mol. Liq. 291 (2019) 111301. Crossref DOI: https://doi.org/10.1016/j.molliq.2019.111301

(29). D. Lapena, L. Lomba, M. Artal, et al., Fluid Ph. Equilibria 492 (2019) 1–9. Crossref DOI: https://doi.org/10.1016/j.fluid.2019.03.018

(30). S.L. Perkins, P. Painter, C.M. Colina, J. Chem. Eng. Data 59 (2014) 3652–3662. Crossref DOI: https://doi.org/10.1021/je500520h

(31). N. Peeters, K. Janssens, D. de Vos, et al., Green Chem. 24 (2022) 6685–6695. Crossref DOI: https://doi.org/10.1039/D2GC02075K

(32). C.Y. Wong, W.Y. Wong, R. Walvekar, et al., J. Mol. Liq. 269 (2018) 675–683. Crossref DOI: https://doi.org/10.1016/j.molliq.2018.08.102

(33). M. Zhong, Q.F. Tang, Y.W. Zhu, et al., J. Power Sources 452 (2020) 227847. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2020.227847

Downloads

Published

20-04-2024

How to Cite

Myrzakhmetov, B., Karibayev, M., Wang, Y., & Mentbayeva, A. (2024). Density Functional Theory Investigation of Intermolecular Interactions for Hydrogen-Bonded Deep Eutectic Solvents . Eurasian Chemico-Technological Journal, 26(1), 29–36. https://doi.org/10.18321/ectj1563

Issue

Section

Articles