Efficient Polysulfides Conversion Kinetics Enabled by Ni@CNF Interlayer for Lithium Sulfur Batteries

Authors

  • I. Rakhimbek National Laboratory Astana, Nazarbayev University, 53, Kabanbay batyr ave., Astana, Kazakhstan
  • N. Baikalov Department of Chemical and Materials Engineering, Nazarbayev University, 53, Kabanbay batyr Ave., Astana, Kazakhstan
  • A. Konarov Department of Chemical and Materials Engineering, Nazarbayev University, 53, Kabanbay batyr Ave., Astana, Kazakhstan
  • A. Mentbayeva Department of Chemical and Materials Engineering, Nazarbayev University, 53, Kabanbay batyr Ave., Astana, Kazakhstan
  • Y. Zhang Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, Liaoning, 116023, China
  • Z. Mansurov Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan
  • M. Wakihara Tokyo Institute of Technology, T2 Chome-12-1 Ookayama, Meguro City, Tokyo 152-8550, Japan
  • Zh. Bakenov National Laboratory Astana, Nazarbayev University, 53, Kabanbay batyr ave., Astana, Kazakhstan; Department of Chemical and Materials Engineering, Nazarbayev University, 53, Kabanbay batyr Ave., Astana, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1517

Abstract

Recent advances in the development of lithium-sulfur batteries (Li-S) demonstrated their high effectiveness owing to their tremendous theoretical specific capacity and high theoretical gravimetrical energy. Nevertheless, the potential commercialization of Li-S is significantly held by the insulating nature of sulfur and complicated RedOx reactions during the electrochemical charge-discharge processes. This paper presents nickel nanoparticles embedded carbon nanofibers interlayer (Ni@CNF) between a cathode and a separator as an additional physical barrier against lithium polysulfides shuttle for their efficient conversion during the charge-discharge cycling. Furthermore, the interlayer provides an auxiliary electron pathway with subsequent lowering of the charge transfer resistance. The electrochemical analysis of a Li-S cell with the Ni@CNF interlayer demonstrated high initial discharge capacities of 1441.2 mAh g-1 and 1194.2 mAh g-1 at 0.1 and 1.0 C rates, respectively, with remarkable capacity retention of ~83% after 100 cycles. This study revealed the advantageous impact of Ni@CNF towards solving the major issues of lithium-sulfur batteries, i.e., sluggish kinetics and the shuttle effect.

References

(1). Z.L. Xu, J.K. Kim, K. Kang, NanoToday 19 (2018) 84–107. Crossref

(2). T.O. Ely, D. Kamzabek, D. Chakraborty, M.F. Doherty, ACS Appl. Energy Mater. 1 (2018) 1783–1814. Crossref

(3). B. Moorthy, S. Kwon, J.H. Kim, P. Ragupathy, H.M. Lee, D.K. Kim, Nanoscale Horizons 4 (2019) 214–222. Crossref

(4). Y.J. Li, J. M. Fan, M. Sen Zheng, Q.F. Dong, Energy Environ. Sci. 9 (2016) 1998–2004. Crossref

(5). D. Liu, C. Zhang, G. Zhou, W. Lv, et al., Adv. Sci. 5 (2018). Crossref

(6). H. Qiu, T. Wang, W. Lv, Q. Liu, J. Huang, J. Colloid Interface Sci. 630 (2023) 106–114. Crossref

(7). J.W. Guo, M.S. Wu, Electrochim. Acta 327 (2019) 135028. Crossref

(8). N. Li, Y. Xie, S. Peng, X. Xiong, K. Han, J. Energy Chem. 42 (2020) 116–125. Crossref

(9). N. Baikalov, I. Rakhimbek, A. Konarov, A. Mentbayeva, Y. Zhang, Z. Bakenov, RSC Adv. 13 (2023) 9428–9440. Crossref

(10). J. Liu, C. Hu, H. Li, N. Baikalov, Z. Bakenov, Y. Zhao, J. Alloys Compd. 871 (2021) 159576. Crossref

(11). M. Wang, X. Xia, Y. Zhong, J. Wu, et al., Chem. – A Eur. J. 25 (2019) 3710–3725. Crossref

(12). Z. He, T. Wan, Y. Luo, G. Liu, et al., Chem. Eng. J., 448 (2022) 137656. Crossref

(13). L. Wang, Z.Y. Wang, J.F. Wu, G.R. Li, et al., Nano Energy 77 (2020) 105173. Crossref

(14). S. Yao, H. Tang, M. Liu, L. Chen, J. Alloys Compd. 788 (2019) 639–648. Crossref

(15). Zhang Ling, Bi Jiaying, Zhao Zhikun, Wang Yuxin, Daobin Mu, Borong Wu, Electrochim. Acta 370 (2021) 137759. Crossref

(16). C. Qi, Z. Li, C. Sun, C. Chen, J. Jin, Z. Wen, ACS Appl. Mater. Interfaces 12 (2020) 49626–49635. Crossref

(17). Y. Liu, G. Feng, X. Guo, Z. Wu, et al., J. Alloys Compd. 748 (2018) 100–110. Crossref

(18). H.B. Kim, D.T. Nga, R. Verma, Y.N. Singhbabu, et al., Ceram. Int. 47 (2021) 21476-21489. Crossref

(19). M. Chen, X. Zhao, Y. Li, P. Zeng, et al., Chem. Eng. J. 385 (2020). Crossref

(20). L. Zhang, D. Liu, Z. Muhammad, F. Wan, et al., Adv. Mater. 31 (2019) 1903955. Crossref

(21). Y. Huang, D. Lv, Z. Zhang, Y. Ding, et al., Chem. Eng. J. 387 (2019) 124122. Crossref

(22). Y. Guo, J. Li, R. Pitcheri, J. Zhu, P. Wen, Y. Qiu, Chem. Eng. J. 355 (2018) 390–398. Crossref

(23). X. Zhang, W. Yuan, Y. Yang, S. Yang, J. Colloid Interface Sci. 583 (2021) 157–165. Crossref

(24). Y. Fu, J. Hu, Q. Wang, D. lin, K. Li, L. Zhou, Carbon 150 (2019) 76–84. Crossref

(25). D. An, L. Shen, D. Lei, L. Wang, H. Ye, J. Energy Chem. 31 (2019) 19–26. Crossref

(26). J. Zhu, Y. Liu, L. Zhong, J. Wang, H. Chen, J. Electroanal. Chem. 881 (2021) 114950. Crossref

(27). Z. Sun, Y. Guo, B. Li, T. Tan, Y. Zhao, Solid State Sci. 95 (2019) 105924. Crossref

(28). L. Jiang, H. Yi, C. Zhongling, P. Peng, et al., Electrochim. Acta 375 (2021). Crossref

(29). S. Das and M. Saha, J. Pharm. Anal. 4 (2014) 351– 359. Crossref

(30). L. Li, G. Xu, X. Liu, S. Huang, X. Wei, L. Yang, J. Power Sources 506 (2021) 230177. Crossref

(31). F. Ma, Z. Chen, K. Srinivas, D. Liu, et al., Chem. Eng. J. 459 (2023) 141526. Crossref

(32). L. Gao, T. Sheng, H. Ran, T.X. Liu, Appl. Surf. Sci. 597 (2022) 153687. Crossref

(33). A. Belgibayeva, I. Taniguchi, J. Power Sources 484 (2021) 229308. Crossref

(34). S.S. Zhang, J. Power Sources 322 (2016) 99–105. Crossref

Downloads

Published

2023-11-20

How to Cite

Rakhimbek, I., Baikalov, N., Konarov, A., Mentbayeva, A., Zhang, Y., Mansurov, Z., … Bakenov, Z. (2023). Efficient Polysulfides Conversion Kinetics Enabled by Ni@CNF Interlayer for Lithium Sulfur Batteries . Eurasian Chemico-Technological Journal, 25(3), 147–156. https://doi.org/10.18321/ectj1517

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>