Efficient Polysulfides Conversion Kinetics Enabled by Ni@CNF Interlayer for Lithium Sulfur Batteries
DOI:
https://doi.org/10.18321/ectj1517Abstract
Recent advances in the development of lithium-sulfur batteries (Li-S) demonstrated their high effectiveness owing to their tremendous theoretical specific capacity and high theoretical gravimetrical energy. Nevertheless, the potential commercialization of Li-S is significantly held by the insulating nature of sulfur and complicated RedOx reactions during the electrochemical charge-discharge processes. This paper presents nickel nanoparticles embedded carbon nanofibers interlayer (Ni@CNF) between a cathode and a separator as an additional physical barrier against lithium polysulfides shuttle for their efficient conversion during the charge-discharge cycling. Furthermore, the interlayer provides an auxiliary electron pathway with subsequent lowering of the charge transfer resistance. The electrochemical analysis of a Li-S cell with the Ni@CNF interlayer demonstrated high initial discharge capacities of 1441.2 mAh g-1 and 1194.2 mAh g-1 at 0.1 and 1.0 C rates, respectively, with remarkable capacity retention of ~83% after 100 cycles. This study revealed the advantageous impact of Ni@CNF towards solving the major issues of lithium-sulfur batteries, i.e., sluggish kinetics and the shuttle effect.
References
(1). Z.L. Xu, J.K. Kim, K. Kang, NanoToday 19 (2018) 84–107. Crossref
(2). T.O. Ely, D. Kamzabek, D. Chakraborty, M.F. Doherty, ACS Appl. Energy Mater. 1 (2018) 1783–1814. Crossref
(3). B. Moorthy, S. Kwon, J.H. Kim, P. Ragupathy, H.M. Lee, D.K. Kim, Nanoscale Horizons 4 (2019) 214–222. Crossref
(4). Y.J. Li, J. M. Fan, M. Sen Zheng, Q.F. Dong, Energy Environ. Sci. 9 (2016) 1998–2004. Crossref
(5). D. Liu, C. Zhang, G. Zhou, W. Lv, et al., Adv. Sci. 5 (2018). Crossref
(6). H. Qiu, T. Wang, W. Lv, Q. Liu, J. Huang, J. Colloid Interface Sci. 630 (2023) 106–114. Crossref
(7). J.W. Guo, M.S. Wu, Electrochim. Acta 327 (2019) 135028. Crossref
(8). N. Li, Y. Xie, S. Peng, X. Xiong, K. Han, J. Energy Chem. 42 (2020) 116–125. Crossref
(9). N. Baikalov, I. Rakhimbek, A. Konarov, A. Mentbayeva, Y. Zhang, Z. Bakenov, RSC Adv. 13 (2023) 9428–9440. Crossref
(10). J. Liu, C. Hu, H. Li, N. Baikalov, Z. Bakenov, Y. Zhao, J. Alloys Compd. 871 (2021) 159576. Crossref
(11). M. Wang, X. Xia, Y. Zhong, J. Wu, et al., Chem. – A Eur. J. 25 (2019) 3710–3725. Crossref
(12). Z. He, T. Wan, Y. Luo, G. Liu, et al., Chem. Eng. J., 448 (2022) 137656. Crossref
(13). L. Wang, Z.Y. Wang, J.F. Wu, G.R. Li, et al., Nano Energy 77 (2020) 105173. Crossref
(14). S. Yao, H. Tang, M. Liu, L. Chen, J. Alloys Compd. 788 (2019) 639–648. Crossref
(15). Zhang Ling, Bi Jiaying, Zhao Zhikun, Wang Yuxin, Daobin Mu, Borong Wu, Electrochim. Acta 370 (2021) 137759. Crossref
(16). C. Qi, Z. Li, C. Sun, C. Chen, J. Jin, Z. Wen, ACS Appl. Mater. Interfaces 12 (2020) 49626–49635. Crossref
(17). Y. Liu, G. Feng, X. Guo, Z. Wu, et al., J. Alloys Compd. 748 (2018) 100–110. Crossref
(18). H.B. Kim, D.T. Nga, R. Verma, Y.N. Singhbabu, et al., Ceram. Int. 47 (2021) 21476-21489. Crossref
(19). M. Chen, X. Zhao, Y. Li, P. Zeng, et al., Chem. Eng. J. 385 (2020). Crossref
(20). L. Zhang, D. Liu, Z. Muhammad, F. Wan, et al., Adv. Mater. 31 (2019) 1903955. Crossref
(21). Y. Huang, D. Lv, Z. Zhang, Y. Ding, et al., Chem. Eng. J. 387 (2019) 124122. Crossref
(22). Y. Guo, J. Li, R. Pitcheri, J. Zhu, P. Wen, Y. Qiu, Chem. Eng. J. 355 (2018) 390–398. Crossref
(23). X. Zhang, W. Yuan, Y. Yang, S. Yang, J. Colloid Interface Sci. 583 (2021) 157–165. Crossref
(24). Y. Fu, J. Hu, Q. Wang, D. lin, K. Li, L. Zhou, Carbon 150 (2019) 76–84. Crossref
(25). D. An, L. Shen, D. Lei, L. Wang, H. Ye, J. Energy Chem. 31 (2019) 19–26. Crossref
(26). J. Zhu, Y. Liu, L. Zhong, J. Wang, H. Chen, J. Electroanal. Chem. 881 (2021) 114950. Crossref
(27). Z. Sun, Y. Guo, B. Li, T. Tan, Y. Zhao, Solid State Sci. 95 (2019) 105924. Crossref
(28). L. Jiang, H. Yi, C. Zhongling, P. Peng, et al., Electrochim. Acta 375 (2021). Crossref
(29). S. Das and M. Saha, J. Pharm. Anal. 4 (2014) 351– 359. Crossref
(30). L. Li, G. Xu, X. Liu, S. Huang, X. Wei, L. Yang, J. Power Sources 506 (2021) 230177. Crossref
(31). F. Ma, Z. Chen, K. Srinivas, D. Liu, et al., Chem. Eng. J. 459 (2023) 141526. Crossref
(32). L. Gao, T. Sheng, H. Ran, T.X. Liu, Appl. Surf. Sci. 597 (2022) 153687. Crossref
(33). A. Belgibayeva, I. Taniguchi, J. Power Sources 484 (2021) 229308. Crossref
(34). S.S. Zhang, J. Power Sources 322 (2016) 99–105. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.