Effect of Hydration on the Intermolecular Interaction of Various Quaternary Ammonium Based Head Groups with Hydroxide Ion of Anion Exchange Membrane Studied at the Molecular Level
DOI:
https://doi.org/10.18321/ectj1499Keywords:
Ion binding, Hydroxide ion, Quaternary ammonium head group, Hydration level, Anion exchange membranes, Molecular dynamic simulationAbstract
Currently, the main limitation of Anion Exchange Membrane Fuel Cells is related to their low chemical stability under alkaline conditions due to the degradation of quaternary ammonium-based head groups, which lowers the transportation of hydroxide ions as well. The knowledge of the intermolecular interaction of various quaternary ammonium head groups with hydroxide ions is the key to improving hydroxide ion’s diffusivity and chemical stability of various quaternary ammonium-based head groups. Consequently, the intermolecular interaction of hydroxide ions with different quaternary ammonium head groups of anion exchange membranes is investigated at the different hydration levels via classical all-atom Molecular Dynamics and molecular well-tempered MetaDynamics simulation methods in this work. Several quaternary ammonium head groups (a) pyridinium, (b) 1,4-diazabicyclo [2.2.2] octane, (c) benzyltrimethylammonium, (d) n-methyl piperidinium, (e) guanidium, and (f) trimethylhexylammonium were investigated in detail. Classical all-atom molecular dynamic simulations illustrate that the results of radial distribution function between the nitrogen atoms of six different quaternary ammonium head groups and hydroxide ion are as follows: (a) > (c) ≥ (f) > (d) > (e) > (b). In addition, from the diffusion coefficient values it was found that the mobility of hydroxide ion by quaternary ammonium head group (f) was lower than (c) at the different hydration levels.
References
(1). Y. Marcus, J. Chem. Soc., Faraday Trans. 87 (1991) 2995‒2999. Crossref
(2). K.B. Rembert, J. Paterova, J. Heyda, et al., J. Am. Chem. Soc. 134 (2012) 10039‒10046. Crossref
(3). G. Eisenman, Biophys. J. 2 (1962) 259. Crossref
(4). M.J. Stevens, S.L. Rempe, J. Phys. Chem. B. 120 (2016) 12519‒12530. Crossref
(5). P. Lo Nostro, B.W. Ninham, Chem. Rev. 112 (2012) 2286‒2322. Crossref
(6). K.D. Collins, Biophys. J. 72 (1997) 65‒76. Crossref
(7). R.D. Hancock, A.E. Martell, Chem. Rev. 89 (1989) 1875‒1914. Crossref
(8). S. Noh, J.Y. Jeon, S. Adhikari, et al., Acc. Chem. Res. 52 (2019) 2745‒2755. Crossref
(9). V. Vijayakumar, S.Y. Nam, Ind. Eng. Chem. Res. 70 (2019) 70‒86. Crossref
(10). B. Bauer, H. Strathmann, F. Effenberger, Desalination 79 (1990) 125‒144. Crossref
(11). T. Sata, J. Membr. Sci. 167 (2000) 1‒31. Crossref
(12). S. Chen, H. Wang, J. Zhang, et al., J. Membr. Sci. 605 (2020) 118105. Crossref
(13). M.-T. Lee, J. Phys. Chem. C 124 (2020) 4470‒4482. Crossref
(14). J. Lu, A. Barnett, V. Molinero, J. Phys. Chem. C 123 (2019) 8717‒8726. Crossref
(15). M.-T. Lee, J. Phys. Chem. C 123 (2019) 10802‒10815. Crossref
(16). J. Lu, L.C. Jacobson, Y.A. Perez Sirkin, V. Molinero, J. Chem. Theory Comput. 13 (2017) 245‒264. Crossref
(17). X. Luo, S.J. Paddison, Solid State Ion. 339 (2019) 115012. Crossref
(18). Z. Zhu, X. Luo, S.J. Paddison, Solid State Ion. 340 (2019) 115011. Crossref
(19). D.J. Kim, C.H. Park, S.Y. Nam, Int. J. Hydrog. Energy 41 (2016) 7641‒7648. Crossref
(20). H. Takaba, T. Hisabe, T. Shimizu, M.K. Alam, J. Membr. Sci. 522 (2017) 237‒244. Crossref
(21). R. Tsuchitani, H. Nakanishi, H. Shishitani, et al., Solid State Ion. 278 (2015) 5‒10. Crossref
(22). G.-L. Li, G. Yang, J. Cheng, et al., J. Phys. Org. Chem. 31 (2018). Crossref
(23). H. Long, K. Kim, B.S. Pivovar, J. Phys. Chem. C. 116 (2012) 9419‒9426. Crossref
(24). T. Xiang, H. Si, Comput. Theor. Chem. 1065 (2015) 12‒17. Crossref
(25). S. Chempath, J.M. Boncella, L.R. Pratt, et al., J. Phys. Chemis. C 114 (2010) 11977‒11983. Crossref
(26). S. Castaneda, R. Ribadeneira, J. Phys. Chem. C 119 (2015) 28235‒28246. Crossref
(27). S. Chempath, B.R. Einsla, L.R. Pratt, et al., J. Phys. Chem. C 112 (2008) 3179‒3182. Crossref
(28). M. Karibayev, S. Kalybekkyzy, Y. Wang, A. Mentbayeva, Molecules 27 (2022) 3574. Crossref
(29). M. Karibayev, B. Myrzakhmetov, S. Kalybekkyzy, et al., Molecules 27 (2022) 2686. Crossref
(30). A. Pohorille, C. Jarzynski, C. Chipot, J. Phys. Chem. B 114 (2010) 10235–10253. Crossref
(31). K.B. Koziara, M. Stroet, A.K. Malde, A.E. Mark, J. Comput. Aided Mol. Des. 28 (2014) 221–233. Crossref
(32). P. Bjelkmar, P. Larsson, M.A. Cuendet, et al., J. Chem. Theory Comput. 6 (2010) 459–466. Crossref
(33). W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, et al., J. Chem. Phys. 79 (1983) 926–935. Crossref
(34). P. Podio-Guidugli, J. Elast. 100 (2010) 145–153. Crossref
(35). H.J.C. Berendsen, Comput. Simul. Mat. Sci. (1991) 139–155. Crossref
(36). F. Sicard, T. Bui, D. Monteiro, et al., Langmuir 34 (2018) 9701–9710. Crossref
(37). J. Hinks, Y. Wang, W.H. Poh, et al., Langmuir 30 (2014) 2429–2440. Crossref
(38). M. Bonomi, G. Bussi, C. Camilloni, et al., Nat. Methods. 16 (2019) 670–673. Crossref
(39). G.A. Tribello, M. Bonomi, D. Branduardi, et al., Comput. Phys. Commun. 185 (2014) 604–613. Crossref
(40). M. Bonomi, D. Branduardi, G. Bussi, et al., Comput. Phys. Commun. 180 (2009) 1961–1972. Crossref
(41). D. Van Der Spoel, E. Lindahl, B. Hess, et al., J. Comput. Chem. 26 (2005) 1701–1718. Crossref
(42). W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14 (1996) 33–38. Crossref
(43). G. Yang, J. Hao, J. Cheng, N. Zhang, G. He, F. Zhang, C. Hao, Int. J. Hydrog. Energy 41 (2016) 6877–6884. Crossref
(44). D.R. Dekel, M. Amar, S. Willdorf, et al., Chem. Mater. 29 (2017) 4425–4431. Crossref
(45). D.R. Dekel, S. Willdorf, U. Ash, et al., J. Power Sources 375 (2018) 351–360. Crossref
(46). A.D. Mohanty, S.E. Tignor, M.R. Sturgeon, et al., J. Electrochem. Soc. 164 (2017) F1279. Crossref
(47). A.D. Mohanty, C. Bae, J. Mater. Chem. A 2 (2014) 17314–17320. Crossref
(48). K.W. Han, K.H. Ko, K. Abu-Hakmeh, et al., J. Phys. Chem. C 118 (2014) 12577–12587. Crossref
(49). N. Zhang, J. Huo, B. Yang, et al., Chem. Eng. Sci. 192 (2018) 1167–1176. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.