Effect of Pre-Oxidation of Electrospun Polyvinylpyrrolidone-Derived CoxP/C Composite Nanofibers on their Electrochemical Performance as Anode in Lithium-Ion Batteries

Authors

  • S. Berikbaikyzy National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, Kazakhstan
  • Y. Sagynbay National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, Kazakhstan
  • G. Turarova National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, Kazakhstan
  • I. Taniguchi Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
  • Zh. Bakenov National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, Kazakhstan
  • A. Belgibayeva National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1498

Keywords:

Lithium-ion batteries, Electrospinning, Conversion-based anodes, Phosphides, Pre-oxidation

Abstract

This research studies the effect of pre-oxidation on physical and electrochemical properties of electrospun polyvinylpyrrolidone (PVP)-derived carbon composites of cobalt phosphides by comparing carbonized non-pre-oxidized (NPO) and pre-oxidized (PO) samples used as anode materials for lithium-ion batteries. The X-Ray diffraction (XRD) patterns revealed the formation of CoP and Co2P in both samples while presence of amorphous cobalt metaphosphate for NPO and cobalt phosphate for PO was determined by X-ray photoelectron spectroscopy (XPS). The electrochemical performance of nanofibers was evaluated by cyclic voltammetry and galvanostatic charge-discharge at different current densities. The results showed improved stability at high current densities (344.1 mAh g-1 at 5000 mA g-1), more significant charge capacity (599.6 mAh g-1 at 500 mA g-1) and higher initial Coulombic efficiency (CE%, 61.1%) for PO samples than NPO.

References

(1). R. Yazami, Ph. Touzain, J. Power Sources 9 (1983) 365‒371. Crossref

(2). R. Yazami, J. Power Sources 97–98 (2001) 33‒38. Crossref

(3). D. Hao Sim, X. Rui, J. Chen, et al., RSC Adv. 2 (2012) 3630–3633. Crossref

(4). Y. Yang, Y. Jiang, W. Fu, et al., Dalton Trans. 48 (2019) 7778–7785. Crossref

(5). D. Puthusseri, M. Wahid, S. Ogale, ACS Omega 3 (2018) 4591–4601. Crossref

(6). D. Yang, J. Zhu, X. Rui, et al., ACS Appl. Mater. Interfaces 5 (2013) 1093–1099. Crossref

(7). Y. Lu, L. Yu, X.W. (David) Lou, Chem 4 (2018) 972–996. Crossref

(8). X. Rui, H. Tan, D. Sim, et al., J. Power Sources 222 (2013) 97–102. Crossref

(9). A. Belgibayeva, I. Taniguchi, Electrochim. Acta 328 (2019) 135101. Crossref

(10). L. Li, P. Liu, K. Zhu, et al., Electrochim. Acta 235 (2017) 79–87. Crossref

(11). Y. Zou, Sh. Jiang, X. Hu, et al., Mater. Today Commun. 26 (2021) 102069. Crossref

(12). M.-R. Ardigo-Besnard, A. Besnard, G.N. Bouala, et al., Crystals 12 (2022) 1732. Crossref

(13). A. Belgibayeva, M. Rakhatkyzy, A. Adi, I. Taniguchi, ChemElectroChem 9 (2022) 17. Crossref

(14). O. Kéri, P. Bárdos, S. Boyadjiev, et al., J. Therm. Anal. Calorim. 137 (2019) 1249–1254. Crossref

(15). O. Elishav, V. Beilin, O. Rozent, et al., J. Polym. Sci. B Polym. Phys. 56 (2018) 248–254. Crossref

(16). W.T. Kim, D.C. Park, W.H. Yang, et al., Nanomaterials 11 (2021) 1616. Crossref

(17). I.M. Szilagyi, E. Santala, M. Heikkilä, et al., J. Therm. Anal. Calorim. 105 (2011) 73–81. Crossref

(18). N. Trung Hieu, J. Suk, D. Wook Kim, et al., J. Mater. Chem. A 2 (2014) 15094–15101. Crossref

(19). F. Ji, Y.L. Li, J.M. Feng, et al., J. Mater. Chem. 19 (2009) 9063–9067. Crossref

(20). Q. Mo, L. He, J. Zeng, Q. Gao, Nanotechnology 30 (2019). Crossref

(21). Z.A. Mansurov, M. Nazhipkyzy, B.T. Lesbayev, et al., Eurasian Chem.-Technol. J. 14 (2012) 19–23. Crossref

(22). H.B.M. Sidek, X. Jin, M.S. Islam, S.J. Hwang, ChemCatChem 11 (2019) 6099–6104. Crossref

(23). Z. Li, Y. Zou, J. Duan, B. Long, Ionics 25 (2019) 4625–4635. Crossref

(24). I. Kurmanbayeva, A. Mentbayeva, A. Sadykova, et al., Eurasian Chem.-Technol. J. 21 (2019) 75–81. Crossref

(25). Y. Liu, X. Que, X. Wu, et al., Mater. Today Chem. 17 (2020) 100284. Crossref

(26). H. He, L. Zeng, X. Li, et al., ACS Appl. Mater. Interfaces 13 (2021) 34410–34418. Crossref

(27). S. Hao, B. Ouyang, C. Li, et al., J. Phys. Chem. C 123 (2019) 8599–8606. Crossref

Downloads

Published

2023-07-15

How to Cite

Berikbaikyzy, S., Sagynbay, Y., Turarova, G., Taniguchi, I., Bakenov, Z., & Belgibayeva, A. (2023). Effect of Pre-Oxidation of Electrospun Polyvinylpyrrolidone-Derived CoxP/C Composite Nanofibers on their Electrochemical Performance as Anode in Lithium-Ion Batteries. Eurasian Chemico-Technological Journal, 25(2), 81–87. https://doi.org/10.18321/ectj1498

Issue

Section

Articles