A Numerical Study of Fluid Flow in the Porous Structure of Biological Scaffolds
DOI:
https://doi.org/10.18321/ectj974Keywords:
Biologically soluble scaffolds, Tissue engineering, Fluid flow, 3D printingAbstract
Tissue engineering (TE) is one of the promising areas that aims to address the global problem of organ and tissue shortages. The successful development of TE, particularly in bone tissue engineering, consists of the use of modern methods that allow the creation of scaffolds, the physicochemical, mechanical, and structural parameters of which will allow achieving the desired clinical results. The vast possibilities of the rapidly developing technology of three-dimensional (3D) printing, which allows the creation of individual scaffolds with high precision, has led to various developments in bone tissue TE. In this work, for the successful use of three-dimensional printing in TE to ensure the diffusion of nutrients during cell cultivation throughout the entire structure of the scaffold, a model of a rotating scaffold is proposed, and the movement of the diffusion flow of nutrient fluid is calculated based on Darcy’s law, which regulates the flow of fluids through porous media. The conducted studies of the rate of diffusion flow of nutrients based on glucose in the porous structure of scaffolds with a 10% content of calcium hydroxyapatite demonstrated the promise of using a model of a rotating composite scaffold in TE of bone tissue. The results show that at a scaffold rotation speed of 12 rpm, the diffusion flow rate of nutrients in the composite scaffolds porous structure is practically not affected by their geometric shape.
References
(1). M.S. Hall, J.T. Decker, L.D. Shea, Biomaterials 255 (2020) 120189. Crossref
(2). C. Li, L. Ouyang, J.P.K. Armstrong, M.M. Stevens, Trends Biotechnol. (2020) In press. Crossref
(3). I.M. Zurina, V.S. Presniakova, D.V. Butnaru, A.A. Svistunov, P.S. Timashev, Y.A. Rochev, Acta Biomater. 113 (2020) 63–83. Crossref
(4). M.T. Calejo, T. Ilmarinen, H. Skottman, M. Kellomäki, Acta Biomater. 66 (2018) 44–66. Crossref
(5). S. Pina, V.P. Ribeiro, O.C. Paiva, V.M. Correlo, J.M. Oliveira, R.L. Reis, Handbook of Tissue Engineering Scaffolds: Volume One, 2019, pp. 165–185. Crossref
(6). M.E. Furth, A. Atala, Principles of Tissue Engineering (Fourth Edition), 2014, pp. 83–123. Crossref
(7). Q. Fu, E. Saiz, M.N. Rahaman, A.P. Tomsia, Mater. Sci. Eng. C 31 (2011) 1245–1256. Crossref
(8). A. Haleem, M. Javaid, R.H. Khan, R. Suman, J. Clin. Orthop. Trauma 11 (2020) S118–S124. Crossref
(9). C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, X. He, S. Tian, J. Liao, B. Lu, Y. Wei, M. Wang, Bioact. Mater. 5 (2020) 82–91. Crossref
(10). J. Zhang, S. Yun, A. Karami, B. Jing, A. Zannettino, Y. Du, H. Zhang, Bioprinting 19 (2020) e00089. Crossref
(11). C.-H. Li, C.-H. Wu, C.-L. Lin, J. Mech. Behav. Biomed. Mater. 105 (2020) 103700. Crossref
(12). L. Wei, S. Wu, M. Kuss, X. Jiang, R. Sun, P. Reid, X. Qin, B. Duan, Bioact. Mater. 4 (2019) 256– 260. Crossref
(13). S. Beg, W.H. Almalki, A. Malik, M. Farhan, M. Aatif, K.S. Alharbi, N.K. Alruwaili, M. Alrobaian, M. Tarique, M. Rahman, Drug Discov. Today (2020) In press. Crossref
(14). S. Liu, H. Zhang, Q. Hu, Z. Shen, D. Rana, M. Ramalingam, J. Mech. Behav. Biomed. Mater. 104 (2020) 103642. Crossref
(15). C.Q. Zhao, X.C. Xu, Y.J. Lu, S.Q. Wu, Z.Y. Xu, T.T. Huang, J.X. Lin, J. Alloy. Compd. 814 (2020) 152327. Crossref
(16). W. Zhang, I. Ullah, L. Shi, Y. Zhang, H. Ou, J. Zhou, M.W. Ullah, X. Zhang, W. Li, Mater. Design 180 (2019) 107946. Crossref
(17). N.M. Ergul, S. Unal, I. Kartal, C. Kalkandelen, N. Ekren, O. Kilic, L. Chi-Chang, O. Gunduz, Polymer Test. 79 (2019) 106006. Crossref
(18). G.E. Dubinenko, A.L. Zinoviev, E.N. Bolbasov, V.T. Novikov, S.I. Tverdokhlebov, Mater. Today: Proc. 22 (2020) 228–234. Crossref
(19). A. Nakayama, I. Pop, Int. J. Heat and Mass Tran. 34 (1991) 357–367. Crossref
(20). G. Fragomeni, R. Iannelli, G. Falvo D’Urso Labate, M. Schwentenwein, G. Catapano, New Biotechnol. 52 (2019) 110–120. Crossref
(21). S. Grossemy, P.P.Y. Chan, P.M. Doran, Biochem. Eng. J. 159 (2020) 107602. Crossref
(22). P. Kumar, B. Dey, G.P. Raja Sekhar, Int. J. Eng. Sci. 127 (2018) 201–216. Crossref
(23). I.I. Krashin, L.V. Semendyaeva, A.I. Zinin, G.A. Zinina. Elsevier Geo-Engineering Book Series 2 (2004) 679–684. Crossref
(24). E.A. Botchwey, S.R. Pollack, E.M. Levine, E.D. Johnston, C.T. Laurencin, J. Biomed. Mater. Res. A 69A (2004) 205–215. Crossref
(25). L.V. Gonzalez Gil, H. Singh, J. de Sa. da Silva, D.P. dos Santos, D.T. Covas, K. Swiech, C.A. Torres Suazo, Biochem. Eng. J. 162 (2020) 107710. Crossref
(26). B.S. Borys, A. Le, E.L. Roberts, T. Dang, L. Rohani, C.Y.-M. Hsu, A.A. Wyma, D.E. Rancourt, I.D. Gates, M.S. Kallos, J. Biotechnol. 304 (2019) 16–27. Crossref
(27). P. Yu, T.S. Lee, Y. Zeng, H.T. Low, Int. J. Heat Mass Tran. 52 (2009) 316–327. Crossref
(28). M. Ciofalo, M.W. Collins, T.R. Hennessy, Med. Eng. Phys. 18 (1996) 437–451. Crossref
(29). Ch.B. Daulbaev, T.P. Dmitriev, F.R. Sultanov, Z.A. Mansurov, E.T. Aliev, J. Eng. Phys. Thermophy. 90 (2017) 1115–1118. Crossref
(30). Ch. Daulbayev, Z. Mansurov, G. Mitchell, A. Zakhidov, Eurasian Chem.-Technol. J. 20 (2018) 119–124. Crossref
(31). F. Sultanov, C. Daulbayev, B. Bakbolat, O. Daulbayev, M. Bigaj, Z. Mansurov, K. Kuterbekov, K. Bekmyrza, Chem. Phys. Lett. 737 (2019) 136821. Crossref
(32). F. Sultanov, B. Bakbolat, Z. Mansurov, Z. Azizov, S.-S. Pei, R. Ebrahim, C. Daulbayev, A. Urazgaliyeva, M. Tulepov, Eurasian Chem.- Technol. J. 19 (2017) 127–132. Crossref
(33). F.R. Sultanov, C. Daulbayev, B. Bakbolat, Z.A. Mansurov, A.A. Urazgaliyeva, R. Ebrahim, S.S. Pei, K.-P. Huang, Carbon Lett. 30 (2020) 81–92. Crossref
(34). F.R. Sultanov, Ch. Daulbayev, B. Bakbolat, Z.A. Mansurov, Eurasian Chem.-Technol. J. 20 (2018) 195–200. Crossref
(35). D.A. Zopf, C.L. Flanagan, A.G. Mitsak, J.R. Brennan, S.J. Hollister, Int. J. Pediatr. Otorhi. 114 (2018) 170–174. Crossref
(36). M. Hemshekhar, R.M. Thushara, S. Chandranayaka, L.S. Sherman, K. Kemparaju, K.S. Girish, Int. J. Biol. Macromol. 86 (2016) 917–928. Crossref
(37). M. Milojević, L. Gradišnik, J. Stergar, M. Skelin Klemen, A. Stožer, M. Vesenjak, P. Dobnik Dubrovski, T. Maver, T. Mohan, K. Stana Kleinschek, U. Maver, Appl. Surf. Sci. 488 (2019) 836–852. Crossref
(38). M.U.A. Khan, S. Haider, S.A. Shah, S.I.A. Razak, S.A. Hassan, M.R.A. Kadir, A. Haider, Int. J. Biol. Macromol. 151 (2020) 584–594. Crossref
(39). M. Ramadas, K. El Mabrouk, A.M. Ballamurugan, Mater. Chem. Phys. 242 (2020) 122456. Crossref
(40). B.W.M. de Wildt, S. Ansari, N.A.J.M. Sommerdijk, K. Ito, A. Akiva, S. Hofmann, Curr. Opin. Biomed. Eng. 10 (2019) 107–115. Crossref
(41). C.M. Agrawal, J.S. McKinney, D. Lanctot, K.A. Athanasiou, Biomaterials 21 (2000) 2443–2452. Crossref
(42). D. Ali, M. Ozalp, S.B.G. Blanquer, S. Onel, Eur. J. Mech. B-Fluid. 79 (2020) 376–385. Crossref
(43). H. Seddiqi, A. Saatchi, G. Amoabediny, M.N. Helder, S.A. Ravasjani, M.S. Hajat Aghaei, J. Jin, B. Zandieh-Doulabi, J. Klein-Nulend, Comput. Biol. Med. 24 (2020) 103826. Crossref
(44). M. Malvè, D.J. Bergstrom, X.B. Chen, Int. Commun. Heat Mass Trans. 96 (2018) 53–60. Crossref J. Zvicer, A.
(45). Medic, D. Veljovic, S. Jevtic, S. Novak, B. Obradovic, Polymer Test. 76 (2019) 464–472. Crossref
(46). G. Belgheisi, M.H. Nazarpak, M.S. Hashjin, Appl. Clay Sci. 185 (2020) 105434. Crossref
(47). A. Abdal-hay, N.T. Raveendran, B. Fournier, S. Ivanovski, Compos. Part B-Eng. 197 (2020) 108158. Crossref
(48). J. Mesquita-Guimarães, L. Ramos, R. Detsch, B. Henriques, M.C. Fredel, F.S. Silva, A.R. Boccaccini, J. Eur. Ceram. Soc. 39 (2019) 2545– 2558. Crossref
(49). B. Pasha Mahammod, E. Barua, A.B. Deoghare, K.M. Pandey, Mater. Today: Proc. 22 (2020) 1687–1693. Crossref
(50). S. Pathmanapan, P. Periyathambi, S.K. Anandasadagopan, Nanomed: Nanotechnol. Biol. Med. 29 (2020) 102251. Crossref
(51). S.F. Robertson, S. Bose, J. Mech. Behav. Biomed. Mater. (2020) 103945. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.