Bio-composite Material on the Basis of Carbonized Rice Husk in Biomedicine and Environmental Applications

  • Z. Mansurov Institute of Combustion Problems, 050012, Almaty, 172 Bogenbay Batyr st., Kazakhstan
  • I. Digel Aachen University of Applied Sciences, 1 Heinrich-Mussmann St., 52428, Julich, Germany
  • M. Biisenbaev Institute of Combustion Problems, 050012, Almaty, 172 Bogenbay Batyr st., Kazakhstan
  • I. Savistkaya Al-Farabi Kazakh National University, 050038, Almaty, 71 Al-Farabi av., Kazakhstan
  • A. Kistaubaeva Al-Farabi Kazakh National University, 050038, Almaty, 71 Al-Farabi av., Kazakhstan
  • N. Akimbekov Al-Farabi Kazakh National University, 050038, Almaty, 71 Al-Farabi av., Kazakhstan
  • A. Zhubanova Al-Farabi Kazakh National University, 050038, Almaty, 71 Al-Farabi av., Kazakhstan


The future prospects for biomedical and environmental engineering applications of heterogeneous materials on the basis of nano-structured carbonized rice husk are studied. The use of the nano-structured carbonized sorbents as delivery vehicles for the oral administration of probiotic microorganisms has a very big potential for improving functionality, safety and stability of probiotic preparations. The other possible mechanism of nano-structured carbonized sorbents is wound healing activity; the results demonstrated that the use of this material may offer multiple specific advantages in topical wound management. For bioremediation purposes nano-structured carbonized sorbents can be applied as bio-composite sorbent with immobilized microbial consortium consisting of bacterial strains with high oil-oxidizing activity.


1. Zobell, C.E., The Effect of Solid Surfaces upon Bacterial Activity. J Bacteriol, 1943. 46(1): p. 39-56.

2. John, D.E. and J.B. Rose, Review of factors affecting microbial survival in groundwater. Environ Sci Technol, 2005. 39(19): p. 7345-56.

3. Costerton, J.W., et al., Microbial biofilms. Annu Rev Microbiol, 1995. 49: p. 711-45.

4. Stoodley, P., et al., Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002. 56: p. 187-209.

5. Kannan, A.M., et al., Bio-batteries and biofuel cells: leveraging on electronic charge transfer proteins. J Nanosci Nanotechnol, 2009. 9(3): p. 1665-78.

6. Shibasaki, S., H. Maeda, and M. Ueda, Molecular display technology using yeast-arming technology. Anal Sci, 2009. 25(1): p. 41-9.

7. Willner, I., B. Willner, and E. Katz, Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry, 2007. 70(1): p. 2-11.

8. Gupta, R. and H. Mohapatra, Microbial biomass: an economical alternative for removal of heavy metals from waste water. Indian J Exp Biol, 2003. 41(9): p. 945-66.

9. Kamaludeen, S.P., et al., Bioremediation of chromium contaminated environments. Indian J Exp Biol, 2003. 41(9): p. 972-85.

10. Hunt, P.G., et al., Denitrification of agricultural drainage line water via immobilized denitrification sludge. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2008. 43(9): p. 1077-84.

11. Akin, C., Biocatalysis with immobilized cells. Biotechnol Genet Eng Rev, 1987. 5: p. 319-67.

12. Digel, I., Effect of transition metal ions and water soluble polymers on microbial cells adhesion to solid surfaces, in Biology Faculty. 1998, Kazakh National University: Almaty.

13. Klein, J. and H. Ziehr, Immobilization of microbial cells by adsorption. J Biotechnol, 1990. 16(1-2): p. 1-15.

14. Digel, I., Controlling microbial adhesion: a surface engineering approach, in Bioengineering in Cell and Tissue Research, S.C. G.M. Artmann, Editor. 2008, Springer: Berlin. p. 601-625.

15. Paca, J., et al., Factors influencing the aerobic biodegradation of 2,4-dinitrotoluene in continuous packed bed reactors. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2011. 46(12): p. 1328-37.

16. Park, C.H., M.R. Okos, and P.C. Wankat, Characterization of an immobilized cell, trickle bed reactor during long term butanol (ABE) fermentation. Biotechnol Bioeng, 1990.36(2): p. 207-17.

17. Cassidy, M.B., H. Lee, and J.T. Trevors, Environmental applications of immobilized microbial cells: A review. Journal of Industrial Microbiology & Biotechnology, 1996. 16(2): p. 79-101.

18. Chibata, I., Application of immobilized enzymes and immobilized microbial cells for productions of L-amino acids and organic acids. Hindustan Antibiot Bull, 1978. 20(3-4): p. 58-67.

19. Smíšek, M. and S. *Cerný, Active carbon: manufacture, properties and applications. Topics in inorganic and general chemistry,. 1970, Amsterdam, New York,: Elsevier Pub. Co. xii, 479 p.

20. Jankowska, H., et al., Active carbon. Ellis Horwood series in physical chemistry. 1991, New York: E. Horwood. 280 p.

21. Burchell, T.D., Carbon materials for advancedtechnologies. 1999, Amsterdam; New York:Pergamon. xvii, 540 p.

22. Gorchakov, V.D., et al., [Immunosorption on active carbon]. Vopr Med Khim, 1981. 27(4): p. 544-7.

23. Scott, L.T. and M.A. Petrukhina, Fragments of fullerenes and carbon nanotubes : designed synthesis, unusual reactions, and coordination chemistry. 2011, Hoboken, N.J.: Wiley. xviii, 413 p.

24. Jorio, A., G. Dresselhaus, and M.S. Dresselhaus, Carbon nanotubes: advanced topics in the synthesis, structure, properties, and applications. Topics in applied physics,. 2008, Berlin ; New York: Springer. xxiv, 720 p.

25. Blank, V. and B. Kulnitskiy, Carbon nanotubes and related structures 2008. 2008, Kerala, India: Research Signpost. 197 p.

26. Banerjee, S., S. Naha, and I.K. Puri, Molecular simulation of the carbon nanotube growth mode during catalytic synthesis. Applied Physics Letters, 2008. 92(23): p. 233121.

27. Zheng, J., et al., Plasma-assisted approaches in inorganic nanostructure fabrication. Adv Mater, 2010. 22(13): p. 1451-73.

28. Son, H.J., Y.H. Park, and J.H. Lee, Development of supporting materials for microbial immobilization and iron oxidation. Appl Biochem Biotechnol, 2004. 112(1): p. 1-12.

29. Mansurov, Z.A. and M.K. Gilmanov, Nanostructural Carbon Sorbents for Different Functional Application, in Sorbents: Properties, Materials and Applications, T.P. Willis, Editor. 2009, Nova Science.

30. Kerimkulova, A.R., et al., Nanoporous carbon sorbent for Molecular – sieve Chromatography of Lipoprotein Complex. Russian J. of Physical Chemistry A, 2012. 86(6): p. 1004-1007.

31. Beg, S., et al., Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol, 2011. 63(2): p. 141-63.

32. Grigor'ev, A.V., et al., [The adhesion of pathogenic microflora on carbon sorbents]. Zh Mikrobiol Epidemiol Immunobiol, 1991(7): p. 11-4.

33. Feng, W. and P. Ji, Enzymes immobilized on carbon nanotubes. Biotechnol Adv, 2011. 29(6): p.889-95.

34. Lenihan, J.S., et al., Protein immobilization on carbon nanotubes through a molecular adapter. J Nanosci Nanotechnol, 2004. 4(6): p.600-4.

35. Mansurov, Z.A., Some Applications of Nanocarbon Materials for Novel Devices Nanoscale Devices - Fundamentals and Applications, R. Gross, A. Sidorenko, and L. Tagirov, Editors. 2006, Springer Netherlands. p. 355-368.

36. Mansurov, Z., Flame synthesis of carbon nanomaterials: An overview. International Journal of Self-Propagating High-Temperature Synthesis, 2011. 20(4): p. 266-268.

37. Korber, D.R., et al., Reporter systems for microscopic analysis of microbial biofilms. Methods Enzymol, 1999. 310: p. 3-20.

38. Verran, J. and K. Whitehead, Factors affecting microbial adhesion to stainless steel and other materials used in medical devices. Int J Artif Organs, 2005. 28(11): p. 1138-45.

39. Geoghegan, M., et al., The polymer physics and chemistry of microbial cell attachment and adhesion. Faraday Discuss, 2008. 139: p. 85- 103; discussion 105-28, 419-20.

40. Junter, G.A. and T. Jouenne, Immobilized viable microbial cells: from the process to the proteome em leader or the cart before the horse. Biotechnol Adv, 2004. 22(8): p. 633-58.

41. Korber, D.R., J.R. Lawrence, and D.E. Caldwell, Effect of Motility on Surface Colonization and Reproductive Success of Pseudomonas fluorescens in Dual-Dilution Continuous Culture and Batch Culture Systems. Appl Environ Microbiol, 1994. 60(5): p. 1421-9.

42. Vigeant, M.A. and R.M. Ford, Interactions between motile Escherichia coli and glass in media with various ionic strengths, as observed with a three-dimensional-tracking microscope. Appl Environ Microbiol, 1997.63(9): p. 3474-9.

43. Lilly, D.M. and R.H. Stillwell, Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science, 1965. 147(3659): p. 747-8.

44. Fuller, R., Probiotics: prospects of use in opportunistic infections. 1995, Herborn-Dill: Institute for Microbiology and Biochemistry.

45. Guarner, F., et al., Should yoghurt cultures be considered probiotic? Br J Nutr, 2005. 93(6):
p. 783-6.

46. Montalto, M., et al., Probiotic treatment increases salivary counts of lactobacilli: a double-blind, randomized, controlled study. Digestion, 2004. 69(1): p. 53-6.

47. Caglar, E., et al., Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand, 2006. 64(5): p.314-8.

48. Sadykov, R., et al., Oral lead exposure induces dysbacteriosis in rats. J Occup Health, 2009. 51(1): p. 64-73.

49. Gershwin, M.E. and A. Belay, Spirulina in human nutrition and health. 2008, Boca Raton: CRC Press. xiii, 312 p.

50. Deng, R. and T.J. Chow, Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovasc Ther, 2010. 28(4): p. e33-45.

51. Vonshak, A., Spirulina platensis (arthrospira): physiology, cell-biology and biotechnology. 1997, London: Taylor & Francis.

52. Elliott, C., The effects of silver dressings on chronic and burns wound healing. Br J Nurs, 2010. 19(15): p. S32-6.

53. Kuliev, R.A. and R.F. Babaev, [Physical factors in the comprehensive therapy of purulent wounds in diabetes mellitus]. Probl Endokrinol (Mosk), 1991. 37(5): p. 24-6.
How to Cite
Z. Mansurov, “Bio-composite Material on the Basis of Carbonized Rice Husk in Biomedicine and Environmental Applications”, Eurasian Chem.-Technol. J., vol. 14, no. 2, pp. 115-131, Jun. 2012.