Formation of Hydroxyapatite Coating by Mechanical Alloying Method
DOI:
https://doi.org/10.18321/ectj434Abstract
Hydroxyapatite [Ca10(PO4)6(OH)2 − HA] material has been clinically applied in many areas of dentistry and orthopaedics. Presented work describes the effect of mechanical alloying treatment, as a non-conventional solid-state process, on the microstructure of hydroxylapatite powder and Ti-alloy substrate. The relationship between the crystallinity, crystallite size and strain of the HA with milling factors was investigated. Milled HA powders and Ti-substrate were characterized by X-Ray Diffraction (XRD) and/or scanning probe microscope (SPM) using atomic force microscopy (AFM). Increasing the ratio of the weight of the ball to the powder (Wb:Wp) ratio and milling time accelerates the broadening and intensity reduction of XRD peaks. There was no evidence that milling time up to 2 hrs or Wb:Wp can change chemical composition of the HA. Decomposition of HA phase or secondary phases such as α and/or β-tri-calcium phosphate (α, β − TCP), and calcium oxide (CaO) was not observed throughout the milling process. The average grain size and the internal strain are calculated from the XRD by Scherrer's formula and Hall–Williamson method. The Ti doped HA samples shows a notable broadening and intensity reduction comparing with HA powders before and after milling.
References
(2). Chean P. and Khor K.A., Biomaterials, 17:537, (1996).
(3). White T., Ferraris C., Kim J. and Madhavi S., Rev. in Min. & Geochem. 57:307, (2005).
(4). Romankov S., Sha W., Kaloshkin S.D., Kaevitser K., Surface & Coatings Technology 201:3235 (2006).
(5). Torosyan A., Tuck J., Korsunsky A., Bagdasaryan S.A., Materials Science Forum, 386-388: 251 (2002).
(6). Suryanarayana C., Prog. In Mater. Sci. 46:1 (2001).
(7). Shih W.J., Wang J.W., Wang M.C., Hon M.H., Mater. Sci. & Eng. C 26:1434 (2006).
(8). Li H., Zhu M.Y., Li L.H., J. Mater. Sci. 43:384 (2008).
(9). El-Eskandarany, M.S., Aoki, K., Itoh, H. and Suzuki, K., J. Less-Common Met. 169, 235 (1991).
(10). Pecharsky V.K., Zavalij P.Y. Fundamentals of powder Diffraction and structural characterization of materials, Library of Congress Cataloging- in-Publication Data, p. 172. (2005).
(11). Sastry K.Y., Froyen L., Vleugels J., Van der Biest O., Schattevoy R., Hennicke J., Rev. Adv. Mater. Sci. 8:34 (2004).
(12). Ribeiroa C. Gibsond I., Barbosa M. Biomaterials., 27:1749 (2006).
(13). Zhu K.Y., Vassel A., Brisset F., Lu K., Lu J., Acta Materialia 52:4100(2004).
(14). Ergun C., Doremus R., Turkish J. Eng. Env. Sci. 27:423 (2003).
(15). Xiao X.F., Liu R.F., Zheng Y.Z., Materials Letters, 59:1660 (2005).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.