Synthesis of Carbon Nanomaterials in Flames

  • Z. Mansurov Institute of Combustion Problems, 172 Bogenbai Batyr St., 050012 Almaty, Republic of Kazakhstan


Usage of combustion processes for production of target products is less common than the application of catalytic processes. However, there are known examples of production of carbon black, HCl, TiO2 etc. Some research work was done at the Institute of Combustion Problems (Almaty, Kazakhstan) consider the synthesis in flame of carbon nanomaterials: fullerenes, nanotubes and soot nanobeads with superhydrophobic surface. An alternative of fullerenes and nanotubes synthesis in arc discharge of graphite is the method using  stationary hydrocarbon flames. Flame is a self-sustaining system in which the hydrocarbons can be precursors of carbon nanomaterials, and the heat released during combustion, is a parameters of the process control. It is known that PAH are nucleation centers of forming soot i.e. PAH can be converted into either soot or fullerenes. The formation of CNTs occurs in diffusion flames from the fuel side and is initiated by transition metals particles. The paper presents data on the formation of fullerenes and carbon nanotubes as well as soot with the superhydrophobic surface, obtained on nickel and silicon supports in benzene-oxygen and propane-oxygen diffusion flames. New results regarding the synthesis of superhydrophobic surface with a contact angle 135-175° have great practical interest as anti-corrosion additives to various materials.


1. Kroto H.W., Heath J.R., O'Brien S.C., et al. C60: Buckminsterfullerene // J. Nature 1985, V. 318. P.162-163.

2. Fullerens and Related Structures / Ed. A. Hirsh Berlin; Springer. 1999.

3. Gerhardt P., Loffler S., Homann K.H. The formation of polyhedral carbon ions in fuelrich acetylene and benzene flames // 22 Symp. (Intern.) on Combustion. Pittsburgh: The Combustion Inst., 1988. P. 395-401.

4. Howard J.B., McKinnon J.T., Makarovsky Y., et al. Fullerenes C60 and C70 in flames // Nature 1991, V. 352.
P. 139-141.

5. Howard J.B., Lafleur A.L., Makarovsky Y., Mitra S., Pope C.J., Yadav T.K. Fullerenes synthesis in combustion. Carbon 1992;30.1183-201.

6. Richter H., Labrocca A.J., Grieco W.J., Taghizadeh K., Lafleur A.L., Howard J.B. Generation of higher fullerenes in flames. J Phys Chem B 1997;101:1556-1560.

7. Chowdhury K.D., Howard J.B., Vander Sande J.B. Fullerenic nanostructures in flames. J Mater Res 1996; 11:341-7.

8. Howard J.B. Fullerenes formatiom in flames // 24nd Symp. (Intern.) on Combustion. Pittsburgh:The Combustion Inst., 1992. P. 933-946.

9. Bachmann M., Wiese W., Homann K-H. Thermal and Chemical influences on the soot mass growth // 25 th Symp. (Intern.) on Combustion. Pittsburgh: The Combustion Inst., 1994. P. 635-643.

10. Ahrens J., Kovacs R., Shafranovskii E.A., Homann K-H. Online multi-photon ionization mass spectrometry applied to PAH and fullerenes in flames. Rer Bunsenges Phys Chem 1994;98:265-268.

11. Ahrens J., Bachmann M., Baum T., Griesheimer J., Kovacs R., Weilmunster P., Homann K-H. Fullerenes and their ions in hydrocarbon flames. Int J Mass Spectrom Ion Process 1994;138:133-48.

12. Bachmann M., Wiese W., Homann K.-H. Fullerenes versus soot in benzene flames // Combust. Flame. 1995. V. 101. P. 548-550.

13. Bachmann M., Wiese W., Homann K-H. PAH and aromers: precursors of fullerenes and soot. Twenty-sixth Symposium (International) on Combustion, The Combustion Institute. Pittsburgh. 1996. p.2259-2267.

14. Stone A.J., Wales D.J. Theoretical studies of icosahedral C60 and some related species. Chem Phys Lett 1986;128:501-503.

15. Zolotukhin I.V., Gustov A.V. Analize metodov polucheniya fullerenov // Perspektivnye materialy. – 2002. - № 2. – С. 5-12.

16. Mansurov Z.A., Prikhodko N.G., Mashan T.T., Lesbaev B.T. Formation of PAN, Fullerences, Nanoparticles and Soot at Combustion of hydrocarbons in Electric Field. Proceedings of the 20th International Colloquium on the Dynamics of Reactive Systems, 2005, July 31- August 5, Montreal, Canada. CD, p.5.

17. Stepanov E.M., D’yachkov B.G. Ionizaciya v plameni i electricheskoe pole. - М.: Metallurgiya, 1968. - 312 p.

18. Lauton G., Vainberg F. Electricheskie aspecty goreniya / Transl.from Engl.; editor V.A. Popova - M.: Energiya, 1976. - 296 p.

19. Calcote H. F., Gill R.J. Comparison of the Ionic Mechanism of Soot Formation with a Free Radical Mechanism // Soot Formation in Combustion. Mechanisms and Models / Ed. H. Bockhorn. Springer Series in Chemical Physics. - Berlin: Springer, 1994. - Vol. 59. - P. 471-484.

20. Rayzer Y.P. Fizika gazovogo razryada. - M.: Nauka, 1987. - 590 p.

21. Mansurov Z.A., Prikhodko N.G., Lesbaev B.T., Mashan T.T. Combustion of the Premixed Benzene-Oxygen Mixture in Electric Field at Low Pressure // 31st International Symposium on Combustion. - Heidelberg, 2006.
- P. 164.

22. Mansurov Z.A., Lesbaev B.T., Chenchik D.I., et. al. Synthesis of Fullerenes and Carbon Nanotubes in Flames // Book of abstracts. Inter. Conf. on Carbon. - Nagano, 2008. - P. 134-139.

23. A. Oberlin, M. Endo, T. Koyama: Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth 32, 335-349 (1976).

24. S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56-58 (1991).

25. Morinobu Endo. Potential Applications of Carbon Nanotubes: Topics in applied physics, Springer-Verlag Berlin Heidelberg – 2008. –13-61 P.

26. Z.A. Mansurov. Some applications of nanocarbon materials for novel devices / R. Gross et. al (eds.), Nanoscale Devices - Fundamentals and Applications, 355-368. 2006 Springer.

27. R.L. Vander Wal, T.M. Ticich, V.E. Curtis. Substrate–support interactions in metalcatalyzed carbon nanofiber growth // Carbon 39 (2001) 2277-2289.

28. L. Yuan, K. Saito, W. Hu, Z. Chen. Ethylene flame synthesis of well-aligned multiwalled carbon nanotubes. // Chem. Phys. Lett., 2001, V. 346, p. 8.

29. R. L. Vander Wal, L.J. Hall, G.M. Berger Optimization of Flame Synthesis for Carbon Nanotubes Using Supported Catalyst // J. Phys. Chem. B, 2002, 106 (51), pp 13122–13132.

30. Kennedy L.A. Carbon nanotubes, synthesis and orientation control in opposed flow diffusion flames. J. oh Heat Transfer-Transactions of the ASME. 2008. 130 (4).

31. Saveliev W., Merchan-Merchan. L.A. Kennedy. Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame // Combust. Flame 135 (2003) 27-33.

32. L. Yuan, T. Li, K. Sano. Synthesis of multiwalled carbon nanotubes using methane/air diffusion flames // Proc. Combust. Inst. 29 (2002) 1087-1092.

33. W. Merchan-Merchan. A.V. Saveliev, L.A. Kennedy. High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control // Carbon 42 (2004) 599-608.

34. G.W. Lee, J. Jurng, J. Hwang. J. Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame // Combust. Flame 139 (2004) 167-175.

35. S. Naha, S. Sen, A. K. De, I.K. Puri. A detailed model for the flame synthesis of carbon nanotubes and nanofibers // Proceedings of the Combustion Institute, Volume 31, Issue 2, (2007), P. 1821-1829.

36. S. Naha, I.K. Puri. A model for catalytic growth of carbon nanotubes // J. Phys. D: Appl. Phys. 41 (2008) 065304 (6 pp).

37. Mansurov Z.A., Prikhodko N.G., Lesbaev B.T., Chenchik D.I. Control of the synthesis of fullerenes and nanotubes in hydrocarbon flames // Bock of abstracts. First Asian carbon conference. – Delhi, (2009). – P. 9.

38. Robertson J. Diamond-like amorphous carbon. Mater Sci Eng R 2002; 37 (4 - 6): 129 - 281.

39. Sen S, Puri IK. Flame synthesis of carbon nanofibers and nanofiber composites containing encapsulated metal particles. Nanotechnology 2004; 15 (3): 264 - 8.

40. Levesque A, Binh VT, Semet V, Guillot D, Fillit RY, Brookes MD, et al. Mono disperse carbon nanopearls in a foam-like arrangement: a new carbon nano-compound for cold cathodes. Thin Solid Films 2004; 464-465:
308 - 14.

41. S. Naha, S. Sen, I.K. Puri. Flame synthesis of superhydrophobic amorphous carbon surfaces // J. Carbon V. 45, Issue 8, (2007), P. 1702-1706.

42. S. Mazumder, S. Ghosh, I. Puri. Nonpremixed flame synthesis of hydrophobic carbon nanostructured surfaces // 33 th. Symp. (Intern.) on Combustion. Pittsburgh: The Combustion Inst., (2010).

43. S. Banerjee, S. Naha, I.K. Puri. Molecular simulation of the carbon nanotube growth mode during catalytic synthesis // Appl. Physics Letters 92, 233121 (2008).

44. Komissarov A.V. This article draws from the portal «NANO NEWS NET» http: //
How to Cite
Z. Mansurov, “Synthesis of Carbon Nanomaterials in Flames”, Eurasian Chem.-Technol. J., vol. 13, no. 1-2, pp. 5-16, Apr. 2011.