Ozone-Catalytic Treatment of Automotive Exhaust

Authors

  • S.R. Khairulin Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia
  • D.V. Maksudov Ufa University of Science and Technology, st. Zaki Validi, 32, Ufa, Rep. Bashkortostan, Russia
  • M.A. Kerzhentsev Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia
  • A.V. Salnikov Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia
  • Z.R. Ismagilov Boreskov Institute of Catalysis SB RAS, pr. Ak. Lavrentieva 5, 630090 Novosibirsk, Russia

DOI:

https://doi.org/10.18321/ectj1637

Keywords:

ozone, ozone-catalytic device, catalyst, honeycomb structure, exhaust gases treatment

Abstract

In the paper, an original design of an ozone-catalytic device, in which the process of ozone formation occurs directly inside the catalyst monolith of the honeycomb structure, is proposed for solving the problem of exhaust gases purification at the "cold start" of an automobile engine. For the considered device, various regimes of operation were examined, and the equations allowing us to calculate the concentrations of ozone depending on time were obtained. The developed mathematical model shows a significant decrease in ozone concentration after the "cold start" is over and the temperature of the exhaust gases increases, because of changes in the balance of various chemical reactions. Thus, the ozone concentration is maximum during a cold start, precisely when the lower temperatures do not allow other reactions than those of oxidation of toxic gases with ozone, and decreases by the time the catalytic unit warms up, when effective neutralization of toxic impurities becomes possible without the participation of ozone. The results of the mathematical modeling were confirmed by testing this device for purifying exhaust gases of a YaMZ-238M2 engine. The test results show that the use of ozone-catalytic reactions significantly increases the efficiency of neutralizing toxic impurities under cold start conditions, compared to the case when only catalytic reactions with oxygen without the participation of ozone are used.

References

(1). R.M. Heck, R.J. Farrauto, Appl. Catal. A Gen. 221 (2001) 443–457. Crossref

(2). J. Kašpar, P. Fornasiero, N. Hickey, Catal. Today 77 (2003) 419–449. Crossref

(3). A.S. Ramadhas, H. Xu, D. Liu, J. Tian, Aerosol Air Qual. Res. 16 (2016) 3330–3337. Crossref

(4). J. Gao, G. Tian, A. Sorniotti, et al., Appl. Therm. Eng. 147 (2019) 177–187. Crossref

(5). F.K. Czaplewski, T.L. Reitz, Y.J. Kim, R.Q. Snurr, Micropor. Mesopor. Mat. 56 (2002) 55–64. Crossref

(6). Yu.V. Ostrovskii, G.M. Zabortsev, Z.R. Ismagilov, V.A. Sazonov. Innovative Low Temperature Ozone-Catalytic Technology for VOC Removal. Catalysis on the eve of the XXI century. Science and Engineering. July 7-11. Novosibirsk-Russia. 1997. Part 2. pp. 399–400.

(7). Yu.V. Ostrovsky, G.M. Zabortsev, A.A. Shpak, et al., Eurasian Chem.-Technol. J. 4 (2002) 31–44. Crossref

(8). Qi Jiang, Shaobo Chen, Zhongjun Xu, Sep. Purif. Technol. 333 (2024) 125882. Crossref

(9). Liangliang Wang, Chenhang Zhang, Tongzhou Xu, et al., Sep. Purif. Technol. 336 (2024) 126223. Crossref

(10). Wenjun Liang, Huipin Sun, Xiujuan Shi, Yuxue Zhu, Catalysts 10 (2020) 511. Crossref

(11). M.J. Kirkpatricka, E. Odic, S. Zinola, J. Lavy, Appl.Catal. B: Environ. 117–118 (2012) 1–9. Crossref

(12). X. Guo, K.H. Ha, D. Du, Catalysts 10 (2020) 577. Crossref

(13). Yunxi Shi, Yong He, Yixi Cai, et al., J. Energy Inst. 102 (2022) 268–277. Crossref

(14). R.E. Alva, P.M. Pacheco, B.F. Gómez, et al., Front. Mech. Eng. 10 (2015) 301–305. Crossref

(15). Tianyi Luo, Shuran Liu, Min Li, et al., J. Catal. 408 (2022) 56–63. Crossref

(16). Young Sun Mok, Heon-Ju Lee, Mirosław Dors, Jerzy Mizeraczyk, Chem. Eng. J. 110 (2005) 79–85. Crossref

(17). D.V. Maksudov, F.R. Ismagilov, I.Kh. Khairulin, et al., Eurasian Chem.-Technol. J. 4 (2002) 271-276. Crossref

(18). A. Al-Abduly, P. Christensen, Plasma Sources Sci. Technol. 24 (2015) 065006. Crossref

(19). Plasma und plasmakatalytische Verfahren zum NOx-Abbau im Dieselabgas. Dissertation von Dipl. –Ing. Tahar Zrilli, Karlsruhe, 2005. URL

Downloads

Published

2024-10-22

How to Cite

Khairulin, S., Maksudov, D., Kerzhentsev, M., Salnikov, A., & Ismagilov, Z. (2024). Ozone-Catalytic Treatment of Automotive Exhaust. Eurasian Chemico-Technological Journal, 26(3), 141–153. https://doi.org/10.18321/ectj1637

Issue

Section

Articles